cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327042 Expansion of Product_{k>=1} 1/((1 - x^k) * (1 - x^(2*k)) * (1 - x^(3*k))).

This page as a plain text file.
%I A327042 #8 Aug 17 2019 02:36:49
%S A327042 1,1,3,5,10,15,29,42,72,107,170,246,382,541,807,1139,1650,2292,3267,
%T A327042 4479,6261,8518,11716,15771,21449,28599,38430,50876,67654,88854,
%U A327042 117171,152775,199785,258901,336024,432744,558027,714494,915555,1166243,1485792,1883031
%N A327042 Expansion of Product_{k>=1} 1/((1 - x^k) * (1 - x^(2*k)) * (1 - x^(3*k))).
%C A327042 Differs from A006168.
%H A327042 Vaclav Kotesovec, <a href="/A327042/b327042.txt">Table of n, a(n) for n = 0..10000</a>
%F A327042 a(n) ~ 11 * exp(sqrt(11*n)*Pi/3) / (48*sqrt(3)*n^(3/2)).
%t A327042 nmax = 50; CoefficientList[Series[Product[1/((1 - x^k) * (1 - x^(2*k)) * (1 - x^(3*k))), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A327042 Cf. A000041, A002513, A327043, A327044.
%Y A327042 Cf. A006171.
%K A327042 nonn
%O A327042 0,3
%A A327042 _Vaclav Kotesovec_, Aug 16 2019