cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327043 Expansion of Product_{k>=1} 1/((1 - x^k) * (1 - x^(2*k)) * (1 - x^(3*k)) * (1 - x^(4*k))).

This page as a plain text file.
%I A327043 #7 Aug 17 2019 02:37:22
%S A327043 1,1,3,5,11,16,32,47,84,124,205,298,477,681,1044,1484,2211,3097,4516,
%T A327043 6261,8948,12295,17273,23511,32597,43975,60187,80601,109114,144999,
%U A327043 194423,256584,341008,447178,589558,768398,1005854,1303450,1694815,2184666,2823229
%N A327043 Expansion of Product_{k>=1} 1/((1 - x^k) * (1 - x^(2*k)) * (1 - x^(3*k)) * (1 - x^(4*k))).
%C A327043 Differs from A006169.
%H A327043 Vaclav Kotesovec, <a href="/A327043/b327043.txt">Table of n, a(n) for n = 0..10000</a>
%F A327043 a(n) ~ 5^(5/2) * exp(5*Pi*sqrt(n/2)/3) / (288*2^(1/4)*n^(7/4)).
%t A327043 nmax = 50; CoefficientList[Series[Product[1/((1 - x^k) * (1 - x^(2*k)) * (1 - x^(3*k)) * (1 - x^(4*k))), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A327043 Cf. A000041, A002513, A327042, A327044.
%Y A327043 Cf. A006171.
%K A327043 nonn
%O A327043 0,3
%A A327043 _Vaclav Kotesovec_, Aug 16 2019