A327044 Expansion of Product_{k>=1} 1/((1 - x^k) * (1 - x^(2*k)) * (1 - x^(3*k)) * (1 - x^(4*k)) * (1 - x^(5*k))).
1, 1, 3, 5, 11, 17, 33, 50, 89, 135, 223, 332, 530, 775, 1190, 1724, 2576, 3677, 5380, 7586, 10895, 15203, 21480, 29666, 41373, 56593, 77965, 105755, 144155, 193947, 261894, 349719, 468193, 620910, 824743, 1086661, 1433205, 1876865, 2459100, 3202155, 4170043
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Product[1/((1 - x^k) * (1 - x^(2*k)) * (1 - x^(3*k)) * (1 - x^(4*k)) * (1 - x^(5*k))), {k, 1, nmax}], {x, 0, nmax}], x]
Formula
a(n) ~ 137^(3/2) * exp(sqrt(137*n/10)*Pi/3) / (2880*sqrt(6)*n^2).
Comments