cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327045 Expansion of Product_{k>=1} (1 + x^k) * (1 + x^(2*k)) * (1 + x^(3*k)).

This page as a plain text file.
%I A327045 #7 Aug 17 2019 02:38:20
%S A327045 1,1,2,4,5,8,13,17,24,36,47,64,89,115,152,204,260,336,438,552,702,896,
%T A327045 1117,1400,1758,2171,2688,3332,4079,5000,6131,7446,9048,10992,13255,
%U A327045 15984,19264,23081,27644,33084,39408,46912,55797,66107,78264,92572,109140
%N A327045 Expansion of Product_{k>=1} (1 + x^k) * (1 + x^(2*k)) * (1 + x^(3*k)).
%H A327045 Vaclav Kotesovec, <a href="/A327045/b327045.txt">Table of n, a(n) for n = 0..10000</a>
%F A327045 a(n) ~ 11^(1/4) * exp(sqrt(11*n/2)*Pi/3) / (2^(13/4)*sqrt(3)*n^(3/4)).
%t A327045 nmax = 50; CoefficientList[Series[Product[(1+x^k) * (1+x^(2*k)) * (1+x^(3*k)), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A327045 Cf. A000009, A001935, A327046, A327047.
%Y A327045 Cf. A107742, A327042.
%K A327045 nonn
%O A327045 0,3
%A A327045 _Vaclav Kotesovec_, Aug 16 2019