This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327047 #7 Aug 17 2019 02:39:21 %S A327047 1,1,2,4,6,10,16,23,34,51,72,101,143,195,267,366,487,650,866,1135, %T A327047 1487,1940,2504,3226,4145,5283,6714,8513,10725,13481,16905,21085, %U A327047 26244,32588,40299,49732,61229,75131,92004,112435,137009,166627,202269,244919,296038 %N A327047 Expansion of Product_{k>=1} (1 + x^k) * (1 + x^(2*k)) * (1 + x^(3*k)) * (1 + x^(4*k)) * (1 + x^(5*k)). %C A327047 In general, for fixed m>=1, if g.f. = Product_{k>=1} (Product_{j=1..m} (1 + x^(j*k))), then a(n) ~ HarmonicNumber(m)^(1/4) * exp(Pi*sqrt(HarmonicNumber(m)*n/3)) / (2^((m+3)/2) * 3^(1/4) * n^(3/4)). %H A327047 Vaclav Kotesovec, <a href="/A327047/b327047.txt">Table of n, a(n) for n = 0..10000</a> %F A327047 a(n) ~ 137^(1/4) * exp(sqrt(137*n/5)*Pi/6) / (2^(9/2)*sqrt(3)*5^(1/4)*n^(3/4)). %t A327047 nmax = 50; CoefficientList[Series[Product[(1+x^k) * (1+x^(2*k)) * (1+x^(3*k)) * (1+x^(4*k)) * (1+x^(5*k)), {k, 1, nmax}], {x, 0, nmax}], x] %Y A327047 Cf. A000009, A001935, A327045, A327046. %Y A327047 Cf. A107742, A327044. %K A327047 nonn %O A327047 0,3 %A A327047 _Vaclav Kotesovec_, Aug 16 2019