cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327048 Expansion of Product_{k>=1} (1 + x^k) * (1 + x^(2*k)) * (1 + x^(3*k)) / ((1 - x^k) * (1 - x^(2*k)) * (1 - x^(3*k))).

This page as a plain text file.
%I A327048 #9 Aug 19 2019 04:09:22
%S A327048 1,2,6,14,30,60,120,220,402,710,1224,2064,3438,5596,9012,14304,22422,
%T A327048 34740,53330,80960,121908,181976,269484,396072,578232,838258,1207896,
%U A327048 1730058,2463900,3490020,4918572,6897012,9626610,13375776,18504852,25494456,34985530
%N A327048 Expansion of Product_{k>=1} (1 + x^k) * (1 + x^(2*k)) * (1 + x^(3*k)) / ((1 - x^k) * (1 - x^(2*k)) * (1 - x^(3*k))).
%C A327048 Convolution of A327045 and A327042.
%H A327048 Vaclav Kotesovec, <a href="/A327048/b327048.txt">Table of n, a(n) for n = 0..10000</a>
%F A327048 a(n) ~ 11 * exp(sqrt(11*n/6)*Pi) / (2^(13/2)*sqrt(3)*n^(3/2)).
%t A327048 nmax = 50; CoefficientList[Series[Product[(1+x^k) * (1+x^(2*k)) * (1+x^(3*k)) / ((1-x^k) * (1-x^(2*k)) * (1-x^(3*k))), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A327048 Cf. A015128, A246584, A327049, A327050.
%Y A327048 Cf. A301554.
%K A327048 nonn
%O A327048 0,2
%A A327048 _Vaclav Kotesovec_, Aug 16 2019