This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327049 #8 Aug 19 2019 04:10:00 %S A327049 1,2,6,14,32,64,132,248,466,838,1488,2560,4370,7272,11988,19424,31160, %T A327049 49280,77294,119780,184164,280408,423808,635136,945628,1397398, %U A327049 2052536,2995210,4346416,6270272,8999668,12848584,18257122,25817760,36349600,50952064,71131448 %N A327049 Expansion of Product_{k>=1} (1 + x^k) * (1 + x^(2*k)) * (1 + x^(3*k)) * (1 + x^(4*k)) / ((1 - x^k) * (1 - x^(2*k)) * (1 - x^(3*k)) * (1 - x^(4*k))). %C A327049 Convolution of A327046 and A327043. %H A327049 Vaclav Kotesovec, <a href="/A327049/b327049.txt">Table of n, a(n) for n = 0..10000</a> %F A327049 a(n) ~ 5^(5/2) * exp(5*Pi*sqrt(n/3)/2) / (2^(17/2)*3^(3/4)*n^(7/4)). %t A327049 nmax = 50; CoefficientList[Series[Product[(1+x^k) * (1+x^(2*k)) * (1+x^(3*k)) * (1+x^(4*k))/((1-x^k) * (1-x^(2*k)) * (1-x^(3*k)) * (1-x^(4*k))), {k, 1, nmax}], {x, 0, nmax}], x] %Y A327049 Cf. A015128, A246584, A327048, A327050. %Y A327049 Cf. A301554. %K A327049 nonn %O A327049 0,2 %A A327049 _Vaclav Kotesovec_, Aug 16 2019