cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327053 Number of T_0 (costrict) set-systems covering n vertices where every two vertices appear together in some edge (cointersecting).

This page as a plain text file.
%I A327053 #9 Feb 04 2024 12:39:31
%S A327053 1,1,3,62,24710,2076948136,9221293198653529144,
%T A327053 170141182628636920684331812494864430896
%N A327053 Number of T_0 (costrict) set-systems covering n vertices where every two vertices appear together in some edge (cointersecting).
%C A327053 A set-system is a finite set of finite nonempty sets. Its elements are sometimes called edges. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. This sequence counts covering set-systems whose dual is strict and pairwise intersecting.
%F A327053 Inverse binomial transform of A327052.
%e A327053 The a(1) = 1 through a(2) = 3 set-systems:
%e A327053   {}  {{1}}  {{1},{1,2}}
%e A327053              {{2},{1,2}}
%e A327053              {{1},{2},{1,2}}
%e A327053 The a(3) = 62 set-systems:
%e A327053   1 2 123    1 2 3 123    1 2 12 13 23   1 2 3 12 13 23   1 2 3 12 13 23 123
%e A327053   1 3 123    1 12 13 23   1 2 3 12 123   1 2 3 12 13 123
%e A327053   2 3 123    1 2 12 123   1 2 3 13 123   1 2 3 12 23 123
%e A327053   1 12 123   1 2 13 123   1 2 3 23 123   1 2 3 13 23 123
%e A327053   1 13 123   1 2 23 123   1 3 12 13 23   1 2 12 13 23 123
%e A327053   12 13 23   1 3 12 123   2 3 12 13 23   1 3 12 13 23 123
%e A327053   2 12 123   1 3 13 123   1 2 12 13 123  2 3 12 13 23 123
%e A327053   2 23 123   1 3 23 123   1 2 12 23 123
%e A327053   3 13 123   2 12 13 23   1 2 13 23 123
%e A327053   3 23 123   2 3 12 123   1 3 12 13 123
%e A327053   12 13 123  2 3 13 123   1 3 12 23 123
%e A327053   12 23 123  2 3 23 123   1 3 13 23 123
%e A327053   13 23 123  3 12 13 23   2 3 12 13 123
%e A327053              1 12 13 123  2 3 12 23 123
%e A327053              1 12 23 123  2 3 13 23 123
%e A327053              1 13 23 123  1 12 13 23 123
%e A327053              2 12 13 123  2 12 13 23 123
%e A327053              2 12 23 123  3 12 13 23 123
%e A327053              2 13 23 123
%e A327053              3 12 13 123
%e A327053              3 12 23 123
%e A327053              3 13 23 123
%e A327053              12 13 23 123
%t A327053 dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
%t A327053 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
%t A327053 Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&UnsameQ@@dual[#]&&stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,3}]
%Y A327053 The pairwise intersecting case is A319774.
%Y A327053 The BII-numbers of these set-systems are the intersection of A326947 and A326853.
%Y A327053 The non-T_0 version is A327040.
%Y A327053 The non-covering version is A327052.
%Y A327053 Cf. A003465, A305843, A319767, A326854, A327020, A327037, A327039.
%K A327053 nonn,more
%O A327053 0,3
%A A327053 _Gus Wiseman_, Aug 18 2019
%E A327053 a(5)-a(7) from _Christian Sievers_, Feb 04 2024