A327059 Number of pairwise intersecting set-systems covering a subset of {1..n} whose dual is a weak antichain.
1, 2, 4, 10, 178
Offset: 0
Examples
The a(0) = 1 through a(3) = 10 set-systems: {} {} {} {} {{1}} {{1}} {{1}} {{2}} {{2}} {{12}} {{3}} {{12}} {{13}} {{23}} {{123}} {{12}{13}{23}} {{12}{13}{23}{123}}
Crossrefs
Programs
-
Mathematica
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Intersection[#1,#2]=={}&],stableQ[dual[#],SubsetQ]&]],{n,0,3}]
Formula
Binomial transform of A327058.
Comments