cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327059 Number of pairwise intersecting set-systems covering a subset of {1..n} whose dual is a weak antichain.

Original entry on oeis.org

1, 2, 4, 10, 178
Offset: 0

Views

Author

Gus Wiseman, Aug 18 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Its elements are sometimes called edges. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. A weak antichain is a multiset of sets, none of which is a proper subset of any other.

Examples

			The a(0) = 1 through a(3) = 10 set-systems:
  {}  {}     {}      {}
      {{1}}  {{1}}   {{1}}
             {{2}}   {{2}}
             {{12}}  {{3}}
                     {{12}}
                     {{13}}
                     {{23}}
                     {{123}}
                     {{12}{13}{23}}
                     {{12}{13}{23}{123}}
		

Crossrefs

Intersecting set-systems are A051185.
The BII-numbers of these set-systems are the intersection of A326910 and A326966.
Set-systems whose dual is a weak antichain are A326968.
The covering version is A327058.
The unlabeled multiset partition version is A327060.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Intersection[#1,#2]=={}&],stableQ[dual[#],SubsetQ]&]],{n,0,3}]

Formula

Binomial transform of A327058.