This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327060 #7 Aug 19 2019 08:50:39 %S A327060 1,1,3,4,9,11,30,42,103,194,443 %N A327060 Number of non-isomorphic weight-n weak antichains of multisets where every two vertices appear together in some edge (cointersecting). %C A327060 A multiset partition is a finite multiset of finite nonempty multisets. It is a weak antichain if no part is a proper submultiset of any other. %e A327060 Non-isomorphic representatives of the a(0) = 1 through a(5) = 11 multiset partitions: %e A327060 {} {{1}} {{11}} {{111}} {{1111}} {{11111}} %e A327060 {{12}} {{122}} {{1122}} {{11222}} %e A327060 {{1}{1}} {{123}} {{1222}} {{12222}} %e A327060 {{1}{1}{1}} {{1233}} {{12233}} %e A327060 {{1234}} {{12333}} %e A327060 {{11}{11}} {{12344}} %e A327060 {{12}{12}} {{12345}} %e A327060 {{12}{22}} {{11}{122}} %e A327060 {{1}{1}{1}{1}} {{12}{222}} %e A327060 {{33}{123}} %e A327060 {{1}{1}{1}{1}{1}} %Y A327060 Antichains are A000372. %Y A327060 The BII-numbers of these set-systems are the intersection of A326853 and A326704. %Y A327060 Cointersecting set-systems are A327039. %Y A327060 The set-system version is A327057, with covering case A327058. %Y A327060 Cf. A006126, A007716, A051185, A305844, A326965, A327020, A327059, A327062. %K A327060 nonn,more %O A327060 0,3 %A A327060 _Gus Wiseman_, Aug 18 2019