A319774 Number of intersecting set systems spanning n vertices whose dual is also an intersecting set system.
1, 1, 2, 14, 814, 1174774, 909125058112, 291200434263385001951232
Offset: 0
Examples
The a(3) = 14 set systems: {{1},{1,2},{1,2,3}} {{1},{1,3},{1,2,3}} {{2},{1,2},{1,2,3}} {{2},{2,3},{1,2,3}} {{3},{1,3},{1,2,3}} {{3},{2,3},{1,2,3}} {{1,2},{1,3},{2,3}} {{1,2},{1,3},{1,2,3}} {{1,2},{2,3},{1,2,3}} {{1,3},{2,3},{1,2,3}} {{1},{1,2},{1,3},{1,2,3}} {{2},{1,2},{2,3},{1,2,3}} {{3},{1,3},{2,3},{1,2,3}} {{1,2},{1,3},{2,3},{1,2,3}}
Crossrefs
Programs
-
Mathematica
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&UnsameQ@@dual[#]&&stableQ[#,Intersection[#1,#2]=={}&]&&stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,3}] (* Gus Wiseman, Aug 19 2019 *)
Extensions
a(6)-a(7) from Christian Sievers, Aug 18 2024
Comments