This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327069 #14 May 26 2021 02:14:33 %S A327069 1,1,0,1,1,0,4,3,1,0,26,28,9,1,0,296,475,227,25,1,0,6064,14736,10110, %T A327069 1782,75,1,0 %N A327069 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and spanning edge-connectivity k. %C A327069 The spanning edge-connectivity of a graph is the minimum number of edges that must be removed (without removing incident vertices) to obtain a disconnected or empty graph. %C A327069 We consider a graph with one vertex and no edges to be disconnected. %e A327069 Triangle begins: %e A327069 1 %e A327069 1 0 %e A327069 1 1 0 %e A327069 4 3 1 0 %e A327069 26 28 9 1 0 %e A327069 296 475 227 25 1 0 %t A327069 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A327069 spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&]; %t A327069 Table[Length[Select[Subsets[Subsets[Range[n],{2}]],spanEdgeConn[Range[n],#]==k&]],{n,0,5},{k,0,n}] %Y A327069 Row sums are A006125. %Y A327069 Column k = 0 is A054592, if we assume A054592(1) = 1. %Y A327069 Column k = 1 is A327071. %Y A327069 Column k = 2 is A327146. %Y A327069 The unlabeled version (except with offset 1) is A263296. %Y A327069 Cf. A001187, A095983, A259862, A322338, A326787, A327070, A327072, A327073. %K A327069 nonn,tabl,more %O A327069 0,7 %A A327069 _Gus Wiseman_, Aug 23 2019 %E A327069 a(21)-a(27) from _Robert Price_, May 25 2021