A327071 Number of labeled simple connected graphs with n vertices and at least one bridge, or graphs with spanning edge-connectivity 1.
0, 0, 1, 3, 28, 475, 14736, 818643, 82367552, 15278576679, 5316021393280, 3519977478407687, 4487518206535452672, 11116767463976825779115, 53887635281876408097483776, 513758302006787897939587736715, 9668884580476067306398361085853696
Offset: 0
Keywords
Links
- Jean-François Alcover and Vaclav Kotesovec, Table of n, a(n) for n = 0..82 [using A001187 and b-file from A095983]
- Eric Weisstein's World of Mathematics, Bridged Graph
Crossrefs
Column k = 1 of A327069.
The unlabeled version is A052446.
Connected graphs without bridges are A007146.
The enumeration of labeled connected graphs by number of bridges is A327072.
Connected graphs with exactly one bridge are A327073.
Graphs with non-spanning edge-connectivity 1 are A327079.
BII-numbers of set-systems with spanning edge-connectivity 1 are A327111.
Covering set-systems with spanning edge-connectivity 1 are A327145.
Graphs with spanning edge-connectivity 2 are A327146.
Programs
-
Mathematica
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&]; Table[Length[Select[Subsets[Subsets[Range[n],{2}]],spanEdgeConn[Range[n],#]==1&]],{n,0,4}]
Comments