cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327072 Triangle read by rows where T(n,k) is the number of labeled simple connected graphs with n vertices and exactly k bridges.

This page as a plain text file.
%I A327072 #10 Dec 29 2020 03:19:58
%S A327072 1,1,0,0,1,0,1,0,3,0,10,12,0,16,0,253,200,150,0,125,0,11968,7680,3600,
%T A327072 2160,0,1296,0,1047613,506856,190365,68600,36015,0,16807,0,169181040,
%U A327072 58934848,16353792,4695040,1433600,688128,0,262144,0,51017714393,12205506096,2397804444,500828832,121706550,33067440,14880348,0,4782969,0
%N A327072 Triangle read by rows where T(n,k) is the number of labeled simple connected graphs with n vertices and exactly k bridges.
%C A327072 A bridge is an edge that, if removed without removing any incident vertices, disconnects the graph. Connected graphs with no bridges are counted by A095983 (2-edge-connected graphs).
%C A327072 Warning: In order to be consistent with A001187, we have treated the n = 0 and n = 1 cases in ways that are not consistent with A095983.
%H A327072 Andrew Howroyd, <a href="/A327072/b327072.txt">Table of n, a(n) for n = 0..1325</a>
%H A327072 Gus Wiseman, <a href="/A327072/a327072.png">The 10 + 12 + 16 graphs counted in row n = 4.</a>
%e A327072 Triangle begins:
%e A327072     1
%e A327072     1   0
%e A327072     0   1   0
%e A327072     1   0   3   0
%e A327072    10  12   0  16   0
%e A327072   253 200 150   0 125   0
%t A327072 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
%t A327072 Table[If[n<=1&&k==0,1,Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]==1&&Count[Table[Length[Union@@Delete[#,i]]<n||Length[csm[Delete[#,i]]]>1,{i,Length[#]}],True]==k&]]],{n,0,4},{k,0,n}]
%o A327072 (PARI) \\ p is e.g.f. of A053549.
%o A327072 T(n)={my(p=x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n))), v=Vec(1+serreverse(serreverse(log(x/serreverse(x*exp(p))))/exp(x*y+O(x^n))))); vector(#v, k, max(0,k-2)!*Vecrev(v[k], k)) }
%o A327072 { my(A=T(8)); for(n=1, #A, print(A[n])) } \\ _Andrew Howroyd_, Dec 28 2020
%Y A327072 Column k = 0 is A095983, if we assume A095983(0) = A095983(1) = 1.
%Y A327072 Column k = 1 is A327073.
%Y A327072 Column k = n - 1 is A000272.
%Y A327072 Row sums are A001187.
%Y A327072 The unlabeled version is A327077.
%Y A327072 Row sums without the first column are A327071.
%Y A327072 Cf. A001349, A007146, A052446, A054592, A059166, A322395, A327069, A327148.
%K A327072 nonn,tabl
%O A327072 0,9
%A A327072 _Gus Wiseman_, Aug 24 2019
%E A327072 Terms a(21) and beyond from _Andrew Howroyd_, Dec 28 2020