A327075 Number of non-connected unlabeled simple graphs covering n vertices.
1, 0, 0, 0, 1, 2, 10, 35, 185, 1242, 13929, 292131, 12344252, 1032326141, 166163019475, 50671385831320, 29105332577409883, 31455744378606296280, 64032559078724993894492, 245999991257359808853560276, 1787823917424909126688749033668, 24639597815428343970034635549911427
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(0) = 1 through a(6) = 10 graphs (empty columns not shown): {} {12,34} {12,35,45} {12,34,56} {12,34,35,45} {12,35,46,56} {12,36,46,56} {13,23,46,56} {12,34,35,46,56} {12,36,45,46,56} {13,23,45,46,56} {12,13,23,45,46,56} {12,35,36,45,46,56} {12,34,35,36,45,46,56}
Links
Crossrefs
Programs
-
Python
from functools import lru_cache from itertools import combinations from fractions import Fraction from math import prod, gcd, factorial from sympy import mobius, divisors from sympy.utilities.iterables import partitions def A327075(n): if n <= 1: return 1-n @lru_cache(maxsize=None) def b(n): return int(sum(Fraction(1<
>1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) @lru_cache(maxsize=None) def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1,n)) return b(n)-b(n-1)-sum(mobius(n//d)*c(d) for d in divisors(n,generator=True))//n # Chai Wah Wu, Jul 03 2024
Extensions
a(20)-a(21) from Chai Wah Wu, Jul 03 2024
Comments