This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327095 #20 Jan 06 2023 05:41:56 %S A327095 1,1,4,2,6,4,8,4,13,6,12,8,14,8,24,8,18,13,20,12,32,12,24,16,31,14,40, %T A327095 16,30,24,32,16,48,18,48,26,38,20,56,24,42,32,44,24,78,24,48,32,57,31, %U A327095 72,28,54,40,72,32,80,30,60,48,62,32,104,32,84,48 %N A327095 Expansion of Sum_{k>=1} k * x^k * (1 - x^k + x^(2*k)) / (1 - x^(4*k)). %H A327095 Robert Israel, <a href="/A327095/b327095.txt">Table of n, a(n) for n = 1..10000</a> %F A327095 G.f.: Sum_{k>=1} x^k * (1 + 3 * x^(2*k) + x^(3*k) + 3 * x^(4*k) + x^(6*k)) / (1 - x^(4*k))^2. %F A327095 a(n) = Sum_{d|n, n/d odd} d - Sum_{d|n, n/d twice odd} d. %F A327095 a(n) = A002131(n) if n odd, A002131(n) - A002131(n/2) if n even. %F A327095 From _Amiram Eldar_, Dec 05 2022: (Start) %F A327095 Multiplicative with a(2^e) = 2^(e-1), and a(p^e) = (p^(e+1)-1)/(p-1) if p > 2. %F A327095 Sum_{k=1..n} a(k) ~ c * n^2, where c = 3*Pi^2/64 = 0.462637... . (End) %F A327095 Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-1/2^s)^2. - _Amiram Eldar_, Jan 06 2023 %p A327095 N:= 100: %p A327095 G:= add(k * x^k * (1 - x^k + x^(2*k)) / (1 - x^(4*k)),k=1..N): %p A327095 S:= series(G,x,N+1): %p A327095 [seq(coeff(S,x,i),i=1..N)];# _Robert Israel_, Sep 17 2019 %t A327095 nmax = 66; CoefficientList[Series[Sum[k x^k (1 - x^k + x^(2 k))/(1 - x^(4 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest %t A327095 A002131[n_] := Total[Select[Divisors[n], OddQ[n/#] &]]; a[n_] := If[OddQ[n], A002131[n], A002131[n] - A002131[n/2]]; Table[a[n], {n, 1, 66}] %t A327095 f[p_, e_] := (p^(e + 1) - 1)/(p - 1); f[2, e_] := 2^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Dec 05 2022 *) %o A327095 (PARI) a(n)={sumdiv(n, d, d*((n/d%2==1) - (n/d%4==2)))} \\ _Andrew Howroyd_, Sep 13 2019 %Y A327095 Cf. A002131, A115607, A285895, A316631 (Moebius transform). %K A327095 nonn,mult %O A327095 1,3 %A A327095 _Ilya Gutkovskiy_, Sep 13 2019