A327102 BII-numbers of set-systems with non-spanning edge-connectivity >= 2.
5, 6, 17, 20, 21, 24, 34, 36, 38, 40, 48, 52, 53, 54, 55, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 80, 81, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 98, 100, 101, 102, 103, 104, 106, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121
Offset: 1
Keywords
Examples
The sequence of all set-systems with non-spanning edge-connectivity >= 2 together with their BII-numbers begins: 5: {{1},{1,2}} 6: {{2},{1,2}} 17: {{1},{1,3}} 20: {{1,2},{1,3}} 21: {{1},{1,2},{1,3}} 24: {{3},{1,3}} 34: {{2},{2,3}} 36: {{1,2},{2,3}} 38: {{2},{1,2},{2,3}} 40: {{3},{2,3}} 48: {{1,3},{2,3}} 52: {{1,2},{1,3},{2,3}} 53: {{1},{1,2},{1,3},{2,3}} 54: {{2},{1,2},{1,3},{2,3}} 55: {{1},{2},{1,2},{1,3},{2,3}} 56: {{3},{1,3},{2,3}} 60: {{1,2},{3},{1,3},{2,3}} 61: {{1},{1,2},{3},{1,3},{2,3}} 62: {{2},{1,2},{3},{1,3},{2,3}} 63: {{1},{2},{1,2},{3},{1,3},{2,3}}
Crossrefs
Graphs with spanning edge-connectivity >= 2 are counted by A095983.
Graphs with non-spanning edge-connectivity >= 2 are counted by A322395.
Also positions of terms >=2 in A326787.
BII-numbers for non-spanning edge-connectivity 2 are A327097.
BII-numbers for non-spanning edge-connectivity 1 are A327099.
BII-numbers for spanning edge-connectivity >= 2 are A327109.
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; edgeConn[y_]:=If[Length[csm[bpe/@y]]!=1,0,Length[y]-Max@@Length/@Select[Union[Subsets[y]],Length[csm[bpe/@#]]!=1&]]; Select[Range[0,100],edgeConn[bpe[#]]>=2&]
Comments