This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327112 #12 Sep 01 2019 22:03:36 %S A327112 0,0,4,72,29856 %N A327112 Number of set-systems covering n vertices with cut-connectivity >= 2, or 2-cut-connected set-systems. %C A327112 A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. The cut-connectivity of a set-system is the minimum number of vertices that must be removed (along with any empty or duplicate edges) to obtain a disconnected or empty set-system. Except for cointersecting set-systems (A327040), this is the same as vertex-connectivity (A327334, A327051). %e A327112 Non-isomorphic representatives of the a(3) = 72 set-systems: %e A327112 {{123}} %e A327112 {{3}{123}} %e A327112 {{23}{123}} %e A327112 {{2}{3}{123}} %e A327112 {{1}{23}{123}} %e A327112 {{3}{23}{123}} %e A327112 {{12}{13}{23}} %e A327112 {{13}{23}{123}} %e A327112 {{1}{2}{3}{123}} %e A327112 {{1}{3}{23}{123}} %e A327112 {{2}{3}{23}{123}} %e A327112 {{3}{12}{13}{23}} %e A327112 {{2}{13}{23}{123}} %e A327112 {{3}{13}{23}{123}} %e A327112 {{12}{13}{23}{123}} %e A327112 {{1}{2}{3}{23}{123}} %e A327112 {{2}{3}{12}{13}{23}} %e A327112 {{1}{2}{13}{23}{123}} %e A327112 {{2}{3}{13}{23}{123}} %e A327112 {{3}{12}{13}{23}{123}} %e A327112 {{1}{2}{3}{12}{13}{23}} %e A327112 {{1}{2}{3}{13}{23}{123}} %e A327112 {{2}{3}{12}{13}{23}{123}} %e A327112 {{1}{2}{3}{12}{13}{23}{123}} %t A327112 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A327112 vConn[sys_]:=If[Length[csm[sys]]!=1,0,Min@@Length/@Select[Subsets[Union@@sys],Function[del,Length[csm[DeleteCases[DeleteCases[sys,Alternatives@@del,{2}],{}]]]!=1]]]; %t A327112 Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&vConn[#]>=2&]],{n,0,3}] %Y A327112 Covering 2-cut-connected graphs are A013922, if we assume A013922(2) = 1. %Y A327112 Covering 1-cut-connected antichains (clutters) are A048143, if we assume A048143(0) = A048143(1) =0. %Y A327112 Covering 2-cut-connected antichains (blobs) are A275307, if we assume A275307(1) = 0. %Y A327112 Covering set-systems with cut-connectivity 2 are A327113. %Y A327112 2-vertex-connected integer partitions are A322387. %Y A327112 BII-numbers of set-systems with cut-connectivity >= 2 are A327101. %Y A327112 The cut-connectivity of the set-system with BII-number n is A326786(n). %Y A327112 Cf. A002218, A003465, A013922, A259862, A323818, A327082, A327126, A327130. %K A327112 nonn,more %O A327112 0,3 %A A327112 _Gus Wiseman_, Aug 24 2019