This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327129 #7 Sep 01 2019 08:40:16 %S A327129 0,1,2,35,2804 %N A327129 Number of connected set-systems covering n vertices with at least one edge whose removal (along with any non-covered vertices) disconnects the set-system (non-spanning edge-connectivity 1). %C A327129 A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. The non-spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (along with any non-covered vertices) to obtain a disconnected or empty set-system. %F A327129 Inverse binomial transform of A327196. %e A327129 The a(3) = 35 set-systems: %e A327129 {123} {1}{12}{23} {1}{2}{12}{13} {1}{2}{3}{12}{13} %e A327129 {1}{13}{23} {1}{2}{12}{23} {1}{2}{3}{12}{23} %e A327129 {1}{2}{123} {1}{2}{13}{23} {1}{2}{3}{13}{23} %e A327129 {1}{3}{123} {1}{2}{3}{123} {1}{2}{3}{12}{123} %e A327129 {2}{12}{13} {1}{3}{12}{13} {1}{2}{3}{13}{123} %e A327129 {2}{13}{23} {1}{3}{12}{23} {1}{2}{3}{23}{123} %e A327129 {2}{3}{123} {1}{3}{13}{23} %e A327129 {3}{12}{13} {2}{3}{12}{13} %e A327129 {3}{12}{23} {2}{3}{12}{23} %e A327129 {1}{23}{123} {2}{3}{13}{23} %e A327129 {2}{13}{123} {1}{2}{13}{123} %e A327129 {3}{12}{123} {1}{2}{23}{123} %e A327129 {1}{3}{12}{123} %e A327129 {1}{3}{23}{123} %e A327129 {2}{3}{12}{123} %e A327129 {2}{3}{13}{123} %t A327129 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A327129 eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]]; %t A327129 Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&eConn[#]==1&]],{n,0,3}] %Y A327129 The restriction to simple graphs is A327079, with non-covering version A327231. %Y A327129 The version for spanning edge-connectivity is A327145, with BII-numbers A327111. %Y A327129 The BII-numbers of these set-systems are A327099. %Y A327129 The non-covering version is A327196. %Y A327129 Cf. A003465, A006129, A263296, A322395, A323818, A327071, A327149. %K A327129 nonn,more %O A327129 0,3 %A A327129 _Gus Wiseman_, Aug 27 2019