A327133 The difference between 10^n and the lesser of the twin primes immediately before.
5, 29, 119, 71, 11, 41, 29, 413, 809, 299, 239, 41, 1511, 29, 2033, 359, 1193, 1073, 1499, 2261, 5003, 2429, 1793, 4331, 833, 5879, 359, 779, 2813, 1061, 2099, 1811, 3281, 5201, 533, 5483, 1679, 1421, 26801, 12089, 2843, 27773, 9641, 10841, 4763, 2129, 1019, 20531, 8519, 14339
Offset: 1
Keywords
Examples
a(1) = 5 because the greatest twin prime pair less than 10 is {5, 7}; a(2) = 29 since the greatest 2-digit twin prime pair is {71, 73}; a(3) = 119 since the greatest 3-digit twin prime pair is {881, 883}; etc.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..1250
Programs
-
Maple
f:= proc(n) local w,p,q; w:= 10^n; q:= w; do p:= q; q:= prevprime(p); if p-q = 2 then return w-q fi; od end proc: map(f, [$1..100]); # Robert Israel, Nov 28 2019
-
Mathematica
p[n_] := Block[{d = PowerMod[10, n, 6]}, 10^n - NestWhile[# -6 &, 10^n -d -1, !PrimeQ[#] || !PrimeQ[# +2] &]]; Array[p, 50] (* updated Nov 29 2019 *)
-
PARI
prectwin(n)=n++; while(!isprime(2+n=precprime(n-1)),); n a(n)=10^n - prectwin(10^n) \\ Charles R Greathouse IV, Nov 28 2019
Comments