cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327133 The difference between 10^n and the lesser of the twin primes immediately before.

Original entry on oeis.org

5, 29, 119, 71, 11, 41, 29, 413, 809, 299, 239, 41, 1511, 29, 2033, 359, 1193, 1073, 1499, 2261, 5003, 2429, 1793, 4331, 833, 5879, 359, 779, 2813, 1061, 2099, 1811, 3281, 5201, 533, 5483, 1679, 1421, 26801, 12089, 2843, 27773, 9641, 10841, 4763, 2129, 1019, 20531, 8519, 14339
Offset: 1

Views

Author

Robert G. Wilson v, Nov 28 2019

Keywords

Comments

All terms are congruent to 5 (mod 6).
Records: 5, 29, 119, 413, 809, 1511, 2033, 2261, 5003, 5879, 26801, ..., 37058441, ... - Robert G. Wilson v, Dec 10 2019

Examples

			a(1) = 5 because the greatest twin prime pair less than 10 is {5, 7};
a(2) = 29 since the greatest 2-digit twin prime pair is {71, 73};
a(3) = 119 since the greatest 3-digit twin prime pair is {881, 883}; etc.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local w,p,q;
    w:= 10^n; q:= w;
    do
      p:= q;
      q:= prevprime(p);
      if p-q = 2 then return w-q fi;
    od
    end proc:
    map(f, [$1..100]); # Robert Israel, Nov 28 2019
  • Mathematica
    p[n_] := Block[{d = PowerMod[10, n, 6]}, 10^n - NestWhile[# -6 &, 10^n -d -1, !PrimeQ[#] || !PrimeQ[# +2] &]]; Array[p, 50] (* updated Nov 29 2019 *)
  • PARI
    prectwin(n)=n++; while(!isprime(2+n=precprime(n-1)),); n
    a(n)=10^n - prectwin(10^n) \\ Charles R Greathouse IV, Nov 28 2019

Formula

a(n) = A011557(n) - A092250(n).