This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327135 #47 Feb 16 2025 08:33:58 %S A327135 1,0,9,3,3,4,3,0,6,9,4,2,9,5,3,3,5,7,1,9,7,6,5,7,9,8,1,5,0,0,7,7,0,0, %T A327135 2,3,4,7,8,0,1,9,2,5,8,4,8,3,2,3,8,3,6,4,6,3,5,0,2,3,0,9,4,3,2,4,3,2, %U A327135 8,1,0,6,9,0,3,2,3,6,2,1,7,4,3,4,0,4,6,2,2,9,2 %N A327135 Decimal expansion of Sum_{k>=1} Kronecker(-7,k)/k^3. %C A327135 Let Chi() be a primitive character modulo d, the so-called Dirichlet L-series L(s,Chi) is the analytic continuation (see the functional equations involving L(s,Chi) in the MathWorld link entitled Dirichlet L-Series) of the sum Sum_{k>=1} Chi(k)/k^s, Re(s)>0 (if d = 1, the sum converges requires Re(s)>1). %C A327135 If s != 1, we can represent L(s,Chi) in terms of the Hurwitz zeta function by L(s,Chi) = (Sum_{k=1..d} Chi(k)*zeta(s,k/d))/d^s. %C A327135 L(s,Chi) can also be represented in terms of the polylog function by L(s,Chi) = (Sum_{k=1..d} Chi'(k)*polylog(s,u^k))/(Sum_{k=1..d} Chi'(k)*u^k), where Chi' is the complex conjugate of Chi, u is any primitive d-th root of unity. %C A327135 If m is a positive integer, we have L(m,Chi) = (Sum_{k=1..d} Chi(k)*polygamma(m-1,k/d))/((-d)^m*(m-1)!). %C A327135 In this sequence we have Chi = A175629 and s = 3. %H A327135 R. J. Mathar, <a href="https://arxiv.org/abs/1008.2547">Table of Dirichlet L-series and prime zeta modulo functions for small moduli</a>, arXiv:1008.2547 [math.NT], 2010-2015, L(m=7,r=4,s=3). %H A327135 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DirichletL-Series.html">Dirichlet L-Series</a>. %H A327135 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PolygammaFunction.html">Polygamma Function</a>. %F A327135 Equals 32*Pi^3/(343*sqrt(7)). %F A327135 Equals (zeta(3,1/7) + zeta(3,2/7) - zeta(3,3/7) + zeta(3,4/7) - zeta(3,5/7) - zeta(3,6/7))/343. %F A327135 Equals (polylog(3,u) + polylog(3,u^2) - polylog(3,u^3) + polylog(3,u^4) - polylog(3,u^5) - polylog(3,u^6))/sqrt(-7), where u = exp(2*Pi*i/7) is a 7th primitive root of unity, i = sqrt(-1). %F A327135 Equals (polygamma(2,1/7) + polygamma(2,2/7) - polygamma(2,3/7) + polygamma(2,4/7) - polygamma(2,5/7) - polygamma(2,6/7))/(-686). %F A327135 Equals 1/(Product_{p prime == 1, 2 or 4 (mod 7)} (1 - 1/p^3) * Product_{p prime == 3, 5 or 6 (mod 7)} (1 + 1/p^3)). - _Amiram Eldar_, Dec 17 2023 %e A327135 1 + 1/2^3 - 1/3^3 + 1/4^3 - 1/5^3 - 1/6^3 + 1/8^3 + 1/9^3 - 1/10^3 + 1/11^3 - 1/12^3 - 1/13^3 + ... = 32*Pi^3/(343*sqrt(7)) = 1.0933430694... %t A327135 RealDigits[32*Pi^3/(343*Sqrt[7]), 10, 102] // First %o A327135 (PARI) default(realprecision, 100); 32*Pi^3/(343*sqrt(7)) %Y A327135 Cf. A175629. %Y A327135 Decimal expansion of Sum_{k>=1} Kronecker(d,k)/k^3, where d is a fundamental discriminant: A251809 (d=-8), this sequence (d=-7), A153071 (d=-4), A129404 (d=-3), A002117 (d=1), A328723 (d=5), A329715 (d=8), A329716 (d=12). %Y A327135 Decimal expansion of Sum_{k>=1} Kronecker(-7,k)/k^s: A326919 (s=1), A103133 (s=2), this sequence (s=3). %K A327135 nonn,cons %O A327135 1,3 %A A327135 _Jianing Song_, Nov 19 2019