cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327148 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of labeled simple graphs with n vertices and non-spanning edge-connectivity k.

This page as a plain text file.
%I A327148 #14 May 26 2021 02:14:43
%S A327148 1,1,1,1,1,3,3,1,4,18,27,14,1,56,250,402,240,65,10,1,1031,5475,11277,
%T A327148 9620,4282,921,146,15,1
%N A327148 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of labeled simple graphs with n vertices and non-spanning edge-connectivity k.
%C A327148 The non-spanning edge-connectivity of a graph is the minimum number of edges that must be removed (along with any isolated vertices) to obtain a disconnected or empty graph.
%F A327148 T(n,k) = Sum_{m = 0..n} binomial(n,m) A327149(m,k). In words, column k is the binomial transform of column k of A327149.
%e A327148 Triangle begins:
%e A327148    1
%e A327148    1
%e A327148    1   1
%e A327148    1   3   3   1
%e A327148    4  18  27  14   1
%e A327148   56 250 402 240  65  10   1
%t A327148 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
%t A327148 edgeConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
%t A327148 Table[Length[Select[Subsets[Subsets[Range[n],{2}]],edgeConnSys[#]==k&]],{n,0,4},{k,0,Binomial[n,2]}]//.{foe___,0}:>{foe}
%Y A327148 Row sums are A006125.
%Y A327148 Column k = 0 is A327199.
%Y A327148 Column k = 1 is A327231.
%Y A327148 The corresponding triangle for vertex-connectivity is A327125.
%Y A327148 The corresponding triangle for spanning edge-connectivity is A327069.
%Y A327148 The covering version is A327149.
%Y A327148 The unlabeled version is A327236, with covering version A327201.
%Y A327148 Cf. A001187, A263296, A322338, A322395, A326787, A327079, A327097, A327099, A327102, A327126, A327144, A327196, A327200, A327201.
%K A327148 nonn,tabf,more
%O A327148 0,6
%A A327148 _Gus Wiseman_, Aug 27 2019
%E A327148 a(20)-a(28) from _Robert Price_, May 25 2021