This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327148 #14 May 26 2021 02:14:43 %S A327148 1,1,1,1,1,3,3,1,4,18,27,14,1,56,250,402,240,65,10,1,1031,5475,11277, %T A327148 9620,4282,921,146,15,1 %N A327148 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of labeled simple graphs with n vertices and non-spanning edge-connectivity k. %C A327148 The non-spanning edge-connectivity of a graph is the minimum number of edges that must be removed (along with any isolated vertices) to obtain a disconnected or empty graph. %F A327148 T(n,k) = Sum_{m = 0..n} binomial(n,m) A327149(m,k). In words, column k is the binomial transform of column k of A327149. %e A327148 Triangle begins: %e A327148 1 %e A327148 1 %e A327148 1 1 %e A327148 1 3 3 1 %e A327148 4 18 27 14 1 %e A327148 56 250 402 240 65 10 1 %t A327148 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A327148 edgeConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]]; %t A327148 Table[Length[Select[Subsets[Subsets[Range[n],{2}]],edgeConnSys[#]==k&]],{n,0,4},{k,0,Binomial[n,2]}]//.{foe___,0}:>{foe} %Y A327148 Row sums are A006125. %Y A327148 Column k = 0 is A327199. %Y A327148 Column k = 1 is A327231. %Y A327148 The corresponding triangle for vertex-connectivity is A327125. %Y A327148 The corresponding triangle for spanning edge-connectivity is A327069. %Y A327148 The covering version is A327149. %Y A327148 The unlabeled version is A327236, with covering version A327201. %Y A327148 Cf. A001187, A263296, A322338, A322395, A326787, A327079, A327097, A327099, A327102, A327126, A327144, A327196, A327200, A327201. %K A327148 nonn,tabf,more %O A327148 0,6 %A A327148 _Gus Wiseman_, Aug 27 2019 %E A327148 a(20)-a(28) from _Robert Price_, May 25 2021