cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327149 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of simple labeled graphs covering n vertices with non-spanning edge-connectivity k.

This page as a plain text file.
%I A327149 #10 Feb 06 2023 09:59:02
%S A327149 1,0,1,0,0,3,1,3,12,15,10,1,40,180,297,180,60,10,1
%N A327149 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of simple labeled graphs covering n vertices with non-spanning edge-connectivity k.
%C A327149 The non-spanning edge-connectivity of a graph is the minimum number of edges that must be removed (along with any non-covered vertices) to obtain a disconnected or empty graph.
%F A327149 A327148(n,k) = Sum_{m = 0..n} binomial(n,m) T(m,k). In words, column k is the inverse binomial transform of column k of A327148.
%e A327149 Triangle begins:
%e A327149    1
%e A327149    {}
%e A327149    0   1
%e A327149    0   0   3   1
%e A327149    3  12  15  10   1
%e A327149   40 180 297 180  60  10   1
%t A327149 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
%t A327149 eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
%t A327149 Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&eConn[#]==k&]],{n,0,4},{k,0,Binomial[n,2]}]//.{foe___,0}:>{foe}
%Y A327149 Row sums are A006129.
%Y A327149 Column k = 0 is A327070.
%Y A327149 Column k = 1 is A327079.
%Y A327149 The corresponding triangle for vertex-connectivity is A327126.
%Y A327149 The corresponding triangle for spanning edge-connectivity is A327069.
%Y A327149 The non-covering version is A327148.
%Y A327149 The unlabeled version is A327201.
%Y A327149 Cf. A001187, A263296, A322338, A322395, A326787, A327097, A327099, A327102, A327125, A327129, A327144.
%K A327149 nonn,tabf,more
%O A327149 0,6
%A A327149 _Gus Wiseman_, Aug 27 2019