This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327150 #20 Nov 28 2019 07:16:32 %S A327150 1,1,1,9,22,77,400,2624,20747,183544,1826374,20045348,240262047, %T A327150 3120641718,43665293393,654731266933,10472819759734,178001257647196, %U A327150 3203520381407270,60859480965537820,1217072840308660049 %N A327150 Number of orbits of the direct square of the alternating group A_n^2 where A_n acts by conjugation. %H A327150 Derek Lim, <a href="/A327150/b327150.txt">Table of n, a(n) for n = 0..61</a> %H A327150 MathOverflow, <a href="http://mathoverflow.net/questions/41337/a-general-formula-for-the-number-of-conjugacy-classes-of-mathbbs-n-times-m/">A general formula for the number of conjugacy classes of S_n×S_n acted on by S_n</a> %F A327150 a(n) = (n!/2) * Sum_{K conjugacy class in A_n} 1/|K|. %e A327150 For n = 3, representatives of the n=9 orbits are (e,e), (e,(123)), (e,(132)), ((123),e), ((132),e), ((123),(123)), ((123),(132)), ((132),(123)), ((132),(132)), where e is the identity. %o A327150 (GAP) G:= AlternatingGroup(n);; Size(G)*Sum(List(ConjugacyClasses(G), K -> 1/Size(K))); %Y A327150 Cf. A000702, A110143, A327014, A327151. %K A327150 nonn %O A327150 0,4 %A A327150 _Derek Lim_, Aug 23 2019