cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327150 Number of orbits of the direct square of the alternating group A_n^2 where A_n acts by conjugation.

This page as a plain text file.
%I A327150 #20 Nov 28 2019 07:16:32
%S A327150 1,1,1,9,22,77,400,2624,20747,183544,1826374,20045348,240262047,
%T A327150 3120641718,43665293393,654731266933,10472819759734,178001257647196,
%U A327150 3203520381407270,60859480965537820,1217072840308660049
%N A327150 Number of orbits of the direct square of the alternating group A_n^2 where A_n acts by conjugation.
%H A327150 Derek Lim, <a href="/A327150/b327150.txt">Table of n, a(n) for n = 0..61</a>
%H A327150 MathOverflow, <a href="http://mathoverflow.net/questions/41337/a-general-formula-for-the-number-of-conjugacy-classes-of-mathbbs-n-times-m/">A general formula for the number of conjugacy classes of S_n×S_n acted on by S_n</a>
%F A327150 a(n) = (n!/2) * Sum_{K conjugacy class in A_n} 1/|K|.
%e A327150 For n = 3, representatives of the n=9 orbits are (e,e), (e,(123)), (e,(132)), ((123),e), ((132),e), ((123),(123)), ((123),(132)), ((132),(123)), ((132),(132)), where e is the identity.
%o A327150 (GAP) G:= AlternatingGroup(n);; Size(G)*Sum(List(ConjugacyClasses(G), K -> 1/Size(K)));
%Y A327150 Cf. A000702, A110143, A327014, A327151.
%K A327150 nonn
%O A327150 0,4
%A A327150 _Derek Lim_, Aug 23 2019