cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327157 Numbers that are members of unitary sigma aliquot cycles (union of unitary perfect, unitary amicable and unitary sociable numbers).

This page as a plain text file.
%I A327157 #29 Feb 04 2024 18:26:49
%S A327157 6,30,42,54,60,90,114,126,1140,1260,1482,1878,1890,2142,2178,2418,
%T A327157 2958,3522,3534,3582,3774,3906,3954,3966,3978,4146,4158,4434,4446,
%U A327157 18018,22302,24180,29580,32130,35220,35238,35340,35820,37740,38682,39060,39540,39660,39780,40446,41460,41580,44340,44460,44772,45402
%N A327157 Numbers that are members of unitary sigma aliquot cycles (union of unitary perfect, unitary amicable and unitary sociable numbers).
%C A327157 Positions of nonzeros in A327159.
%C A327157 Numbers n for which n = A034460^k(n) for some k >= 1, where A034460^k(n) means k-fold application of A034460 starting from n.
%C A327157 The terms that are not multiples of 6 are: 142310, 168730, 1077890, 1099390, 1156870, 1292570, ..., that seem all to be present in A063991.
%C A327157 Among the first 440 terms, there are numbers present in 1-cycles (A002827), 2-cycles (A063991), and also cycles of sizes 3, 4 (A319902), 5 (A097024), 6 (A319917), 14 (A097030), 25, 26, 39 and 65.
%H A327157 Antti Karttunen, <a href="/A327157/b327157.txt">Table of n, a(n) for n = 1..440</a>
%H A327157 J. O. M. Pedersen, <a href="http://web.archive.org/web/20130731050921/http://amicable.homepage.dk/knwnux.htm">Known Unitary Sociable Numbers of order different from four</a> [Via Internet Archive Wayback-Machine]
%e A327157 6 is a member as A034460(6) = 6.
%e A327157 30 is a member as A034460(A034460(A034460(30))) = 30.
%t A327157 (* Function cycleL[] and support a034460[] are defined in A327159 *)
%t A327157 a327157[n_] := Map[cycleL, Range[n]]
%t A327157 a327157[45402] (* _Hartmut F. W. Hoft_, Feb 04 2024 *)
%o A327157 (PARI)
%o A327157 A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); };
%o A327157 A034460(n) = (A034448(n) - n);
%o A327157 memo327159 = Map();
%o A327157 A327159(n) = if(1==n,0,my(v,orgn=n,xs=Set([])); if(mapisdefined(memo327159, n, &v), v, while(n && !vecsearch(xs,n), xs = setunion([n],xs); n = A034460(n); if(mapisdefined(memo327159,n),for(i=1,#xs,mapput(memo327159,xs[i],0)); return(0))); if(n==orgn,v = length(xs); for(i=1,v,mapput(memo327159,xs[i],v)), v = 0; mapput(memo327159,orgn,v)); (v)));
%o A327157 k=0; n=0; while(k<=1001, n++; if(t=A327159(n), k++; print(n," -> ",t); write("b327157.txt", k," ", n)));
%Y A327157 Cf. A002827, A063991, A097024, A097030, A319902, A319917, A319937 (subsequences), A034448, A034460, A097031, A327159.
%Y A327157 Subsequence of A003062.
%K A327157 nonn
%O A327157 1,1
%A A327157 _Antti Karttunen_, Sep 17 2019