A327196 Number of connected set-systems with n vertices and at least one bridge that is not an endpoint (non-spanning edge-connectivity 1).
0, 1, 4, 44, 2960
Offset: 0
Examples
Non-isomorphic representatives of the a(3) = 44 set-systems: {{1}} {{1,2}} {{1,2,3}} {{1},{2},{1,2}} {{1},{1,2},{2,3}} {{1},{2},{1,2,3}} {{1},{2,3},{1,2,3}} {{1},{2},{1,2},{1,3}} {{1},{2},{1,3},{2,3}} {{1},{2},{3},{1,2,3}} {{1},{2},{1,3},{1,2,3}} {{1},{2},{3},{1,2},{1,3}} {{1},{2},{3},{1,2},{1,2,3}}
Crossrefs
Programs
-
Mathematica
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]]; Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],eConn[#]==1&]],{n,0,3}]
Formula
Binomial transform of A327129.
Comments