This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327197 #5 Sep 01 2019 22:03:59 %S A327197 0,1,0,24,1984 %N A327197 Number of set-systems covering n vertices with cut-connectivity 1. %C A327197 A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. The cut-connectivity of a set-system is the minimum number of vertices that must be removed (along with any resulting empty edges) to obtain in a disconnected or empty set-system. Except for cointersecting set-systems (A327040), this is the same as vertex-connectivity. %F A327197 Inverse binomial transform of A327128. %e A327197 The a(3) = 24 set-systems: %e A327197 {12}{13} {1}{12}{13} {1}{2}{12}{13} {1}{2}{3}{12}{13} %e A327197 {12}{23} {1}{12}{23} {1}{2}{12}{23} {1}{2}{3}{12}{23} %e A327197 {13}{23} {1}{13}{23} {1}{2}{13}{23} {1}{2}{3}{13}{23} %e A327197 {2}{12}{13} {1}{3}{12}{13} %e A327197 {2}{12}{23} {1}{3}{12}{23} %e A327197 {2}{13}{23} {1}{3}{13}{23} %e A327197 {3}{12}{13} {2}{3}{12}{13} %e A327197 {3}{12}{23} {2}{3}{12}{23} %e A327197 {3}{13}{23} {2}{3}{13}{23} %t A327197 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A327197 cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]]; %t A327197 Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&cutConnSys[Range[n],#]==1&]],{n,0,3}] %Y A327197 The BII-numbers of these set-systems are A327098. %Y A327197 The same for cut-connectivity 2 is A327113. %Y A327197 The non-covering version is A327128. %Y A327197 Cf. A003465, A052442, A052443, A259862, A323818, A326786, A327101, A327112, A327114, A327126, A327229. %K A327197 nonn,more %O A327197 0,4 %A A327197 _Gus Wiseman_, Sep 01 2019