This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327229 #8 Jan 21 2023 16:11:57 %S A327229 0,1,4,50,3069,2521782,412169726428,4132070622008664529903, %T A327229 174224571863520492185852863478334475199686, %U A327229 133392486801388257127953774730008469744261637221272599199572772174870315402893538 %N A327229 Number of set-systems covering n vertices with at least one endpoint/leaf. %C A327229 Covering means there are no isolated vertices. %C A327229 A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. A leaf is an edge containing a vertex that does not belong to any other edge, while an endpoint is a vertex belonging to only one edge. %C A327229 Also covering set-systems with minimum vertex-degree 1. %H A327229 Andrew Howroyd, <a href="/A327229/b327229.txt">Table of n, a(n) for n = 0..12</a> %F A327229 Inverse binomial transform of A327228. %e A327229 The a(2) = 4 set-systems: %e A327229 {{1,2}} %e A327229 {{1},{2}} %e A327229 {{1},{1,2}} %e A327229 {{2},{1,2}} %t A327229 Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,3}] %Y A327229 The non-covering version is A327228. %Y A327229 The specialization to simple graphs is A327227. %Y A327229 The unlabeled version is A327230. %Y A327229 BII-numbers of these set-systems are A327105. %Y A327229 Cf. A003465, A245797, A327079, A327098, A327103, A327107, A327197. %K A327229 nonn %O A327229 0,3 %A A327229 _Gus Wiseman_, Sep 01 2019 %E A327229 Terms a(5) and beyond from _Andrew Howroyd_, Jan 21 2023