This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327230 #5 Sep 02 2019 08:05:05 %S A327230 0,1,3,14,198 %N A327230 Number of non-isomorphic set-systems covering n vertices with at least one endpoint/leaf. %C A327230 A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. A leaf is an edge containing a vertex that does not belong to any other edge, while an endpoint is a vertex belonging to only one edge. %C A327230 Also covering set-systems with minimum vertex-degree 1. %e A327230 Non-isomorphic representatives of the a(1) = 1 through a(3) = 14 set-systems: %e A327230 {{1}} {{1,2}} {{1,2,3}} %e A327230 {{1},{2}} {{1},{2,3}} %e A327230 {{2},{1,2}} {{1},{2},{3}} %e A327230 {{1,3},{2,3}} %e A327230 {{3},{1,2,3}} %e A327230 {{1},{3},{2,3}} %e A327230 {{2,3},{1,2,3}} %e A327230 {{2},{1,3},{2,3}} %e A327230 {{2},{3},{1,2,3}} %e A327230 {{3},{1,3},{2,3}} %e A327230 {{1},{2},{3},{2,3}} %e A327230 {{3},{2,3},{1,2,3}} %e A327230 {{2},{3},{1,3},{2,3}} %e A327230 {{2},{3},{2,3},{1,2,3}} %Y A327230 Unlabeled covering set-systems are A055621. %Y A327230 The labeled version is A327229. %Y A327230 The non-covering version is A327335 (partial sums). %Y A327230 Cf. A002494, A245797, A261919, A283877, A327103, A327105, A327197, A327227, A327228. %K A327230 nonn,more %O A327230 0,3 %A A327230 _Gus Wiseman_, Sep 01 2019