This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327236 #5 Sep 03 2019 09:57:53 %S A327236 1,1,1,1,1,1,1,1,2,2,3,3,1,4,5,10,8,5,1,1 %N A327236 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of unlabeled simple graphs with n vertices whose edge-set has non-spanning edge-connectivity k. %C A327236 The non-spanning edge-connectivity of a graph is the minimum number of edges that must be removed to obtain a disconnected or empty graph, ignoring isolated vertices. %H A327236 Gus Wiseman, <a href="/A327236/a327236.png">Unlabeled graphs with 5 vertices, organized by non-spanning edge-connectivity (isolated vertices not shown).</a> %e A327236 Triangle begins: %e A327236 1 %e A327236 1 %e A327236 1 1 %e A327236 1 1 1 1 %e A327236 2 2 3 3 1 %e A327236 4 5 10 8 5 1 1 %t A327236 csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A327236 edgeConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]]; %t A327236 Table[Length[Union[normclut/@Select[Subsets[Subsets[Range[n],{2}]],edgeConnSys[#]==k&]]],{n,0,5},{k,0,Binomial[n,2]}]//.{foe___,0}:>{foe} %Y A327236 Row sums are A000088. %Y A327236 Column k = 0 is A327235. %Y A327236 The labeled version is A327148. %Y A327236 The covering version is A327201. %Y A327236 Spanning edge-connectivity is A263296. %Y A327236 Vertex-connectivity is A259862. %Y A327236 Cf. A322338, A322396, A326787, A327069, A327077, A327097, A327099, A327102, A327200, A327231. %K A327236 nonn,tabf,more %O A327236 0,9 %A A327236 _Gus Wiseman_, Sep 03 2019