cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327236 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of unlabeled simple graphs with n vertices whose edge-set has non-spanning edge-connectivity k.

This page as a plain text file.
%I A327236 #5 Sep 03 2019 09:57:53
%S A327236 1,1,1,1,1,1,1,1,2,2,3,3,1,4,5,10,8,5,1,1
%N A327236 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of unlabeled simple graphs with n vertices whose edge-set has non-spanning edge-connectivity k.
%C A327236 The non-spanning edge-connectivity of a graph is the minimum number of edges that must be removed to obtain a disconnected or empty graph, ignoring isolated vertices.
%H A327236 Gus Wiseman, <a href="/A327236/a327236.png">Unlabeled graphs with 5 vertices, organized by non-spanning edge-connectivity (isolated vertices not shown).</a>
%e A327236 Triangle begins:
%e A327236   1
%e A327236   1
%e A327236   1  1
%e A327236   1  1  1  1
%e A327236   2  2  3  3  1
%e A327236   4  5 10  8  5  1  1
%t A327236 csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
%t A327236 edgeConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
%t A327236 Table[Length[Union[normclut/@Select[Subsets[Subsets[Range[n],{2}]],edgeConnSys[#]==k&]]],{n,0,5},{k,0,Binomial[n,2]}]//.{foe___,0}:>{foe}
%Y A327236 Row sums are A000088.
%Y A327236 Column k = 0 is A327235.
%Y A327236 The labeled version is A327148.
%Y A327236 The covering version is A327201.
%Y A327236 Spanning edge-connectivity is A263296.
%Y A327236 Vertex-connectivity is A259862.
%Y A327236 Cf. A322338, A322396, A326787, A327069, A327077, A327097, A327099, A327102, A327200, A327231.
%K A327236 nonn,tabf,more
%O A327236 0,9
%A A327236 _Gus Wiseman_, Sep 03 2019