This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327237 #9 Jun 27 2020 03:44:33 %S A327237 1,1,0,1,0,1,1,3,3,1,4,40,15,4,1,56,660,267,35,5,1,1031,18756,11022, %T A327237 1862,90,6,1 %N A327237 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices that, if the isolated vertices are removed, have cut-connectivity k. %C A327237 We define the cut-connectivity of a graph to be the minimum number of vertices that must be removed (along with any incident edges) to obtain a disconnected or empty graph, with the exception that a graph with one vertex has cut-connectivity 1. Except for complete graphs, this is the same as vertex-connectivity. %F A327237 Column-wise binomial transform of A327126. %e A327237 Triangle begins: %e A327237 1 %e A327237 1 0 %e A327237 1 0 1 %e A327237 1 3 3 1 %e A327237 4 40 15 4 1 %e A327237 56 660 267 35 5 1 %t A327237 csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A327237 cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]]; %t A327237 Table[Length[Select[Subsets[Subsets[Range[n],{2}]],cutConnSys[Union@@#,#]==k&]],{n,0,4},{k,0,n}] %Y A327237 Row sums are A006125. %Y A327237 Column k = 0 is A327199. %Y A327237 The covering case is A327126. %Y A327237 Row sums without the first column are A287689. %Y A327237 Cf. A006125, A001187, A013922, A259862, A322389, A326786, A327070, A327114, A327125, A327127, A327198. %K A327237 nonn,tabl,more %O A327237 0,8 %A A327237 _Gus Wiseman_, Sep 03 2019 %E A327237 a(21)-a(27) from _Jinyuan Wang_, Jun 27 2020