This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327245 #28 Apr 29 2020 07:44:57 %S A327245 1,0,1,0,1,3,0,3,10,13,0,3,39,87,75,0,5,100,510,836,541,0,11,303,2272, %T A327245 7042,9025,4683,0,13,782,9999,46628,104255,109110,47293,0,19,2009, %U A327245 39369,284319,948725,1662273,1466003,545835,0,27,5388,154038,1577256,7676830,19798096,28538496,21713032,7087261 %N A327245 Number T(n,k) of colored compositions of n using all colors of a k-set such that all parts have different color patterns and the patterns for parts i have i colors in (weakly) increasing order; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %H A327245 Alois P. Heinz, <a href="/A327245/b327245.txt">Rows n = 0..140, flattened</a> %F A327245 Sum_{k=1..n} k * T(n,k) = A327588(n). %e A327245 T(3,1) = 3: 3aaa, 2aa1a, 1a2aa. %e A327245 T(3,2) = 10: 3aab, 3abb, 2aa1b, 2ab1a, 2ab1b, 2bb1a, 1a2ab, 1a2bb, 1b2aa, 1b2ab. %e A327245 T(3,3) = 13: 3abc, 2ab1c, 2ac1b, 2bc1a, 1a2bc, 1b2ac, 1c2ab, 1a1b1c, 1a1c1b, 1b1a1c, 1b1c1a, 1c1a1b, 1c1b1a. %e A327245 Triangle T(n,k) begins: %e A327245 1; %e A327245 0, 1; %e A327245 0, 1, 3; %e A327245 0, 3, 10, 13; %e A327245 0, 3, 39, 87, 75; %e A327245 0, 5, 100, 510, 836, 541; %e A327245 0, 11, 303, 2272, 7042, 9025, 4683; %e A327245 0, 13, 782, 9999, 46628, 104255, 109110, 47293; %e A327245 0, 19, 2009, 39369, 284319, 948725, 1662273, 1466003, 545835; %e A327245 ... %p A327245 C:= binomial: %p A327245 b:= proc(n, i, k, p) option remember; `if`(n=0, p!, `if`(i<1, 0, add( %p A327245 b(n-i*j, min(n-i*j, i-1), k, p+j)*C(C(k+i-1, i), j), j=0..n/i))) %p A327245 end: %p A327245 T:= (n, k)-> add(b(n$2, i, 0)*(-1)^(k-i)*C(k, i), i=0..k): %p A327245 seq(seq(T(n, k), k=0..n), n=0..10); %t A327245 c = Binomial; %t A327245 b[n_, i_, k_, p_] := b[n, i, k, p] = If[n == 0, p!, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i-1], k, p + j] c[c[k + i - 1, i], j], {j, 0, n/i}]]]; %t A327245 T[n_, k_] := Sum[b[n, n, i, 0] (-1)^(k - i) c[k, i], {i, 0, k}]; %t A327245 Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Apr 29 2020, after _Alois P. Heinz_ *) %Y A327245 Columns k=0-2 give: A000007, A032020 (for n>0), A327847. %Y A327245 Main diagonal gives A000670. %Y A327245 Row sums give A321586. %Y A327245 T(2n,n) gives A327589. %Y A327245 Cf. A327244, A327588. %K A327245 nonn,tabl %O A327245 0,6 %A A327245 _Alois P. Heinz_, Sep 14 2019