cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327249 Expansion of Sum_{k>=1} x^k * (1 + k * x^k)^k.

This page as a plain text file.
%I A327249 #17 Sep 08 2022 08:46:24
%S A327249 1,2,1,5,1,14,1,17,28,26,1,160,1,50,251,321,1,622,1,1607,1030,122,1,
%T A327249 6257,3126,170,2917,12202,1,27291,1,28929,6656,290,84036,117721,1,362,
%U A327249 13183,407121,1,417881,1,220100,850312,530,1,2246465,823544,2100626
%N A327249 Expansion of Sum_{k>=1} x^k * (1 + k * x^k)^k.
%F A327249 a(n) = Sum_{d|n} (n/d)^(d-1) * binomial(n/d,d-1).
%t A327249 nmax = 50; CoefficientList[Series[Sum[x^k (1 + k x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
%t A327249 Table[DivisorSum[n, (n/#)^(# - 1) Binomial[n/#, # - 1] &], {n, 1, 50}]
%o A327249 (Magma) [&+[(n div d)^(d-1)*Binomial(n div d,d-1):d in Divisors(n)]:n in [1..50]]; // _Marius A. Burtea_, Sep 15 2019
%o A327249 (PARI) a(n) = sumdiv(n, d, (n/d)^(d-1) * binomial(n/d,d-1)); \\ _Michel Marcus_, Sep 15 2019
%Y A327249 Cf. A006005 (positions of 1's), A087909, A217668, A260180, A327238.
%K A327249 nonn
%O A327249 1,2
%A A327249 _Ilya Gutkovskiy_, Sep 15 2019