cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327251 Expansion of Sum_{k>=1} psi(k) * x^k / (1 - x^k)^2, where psi = A001615.

This page as a plain text file.
%I A327251 #21 Aug 24 2021 17:01:29
%S A327251 1,5,7,16,11,35,15,44,33,55,23,112,27,75,77,112,35,165,39,176,105,115,
%T A327251 47,308,85,135,135,240,59,385,63,272,161,175,165,528,75,195,189,484,
%U A327251 83,525,87,368,363,235,95,784,161,425,245,432,107,675,253,660,273
%N A327251 Expansion of Sum_{k>=1} psi(k) * x^k / (1 - x^k)^2, where psi = A001615.
%C A327251 Inverse Moebius transform of A322577.
%C A327251 Dirichlet convolution of A001615 with A000027.
%F A327251 a(n) = Sum_{d|n} psi(n/d) * d.
%F A327251 a(p) = 2*p + 1, where p is prime.
%F A327251 Multiplicative with a(p^e) = p^(e-1)*((p+1)*e + p). - _Antti Karttunen_, Aug 24 2021
%t A327251 nmax = 57; CoefficientList[Series[Sum[DirichletConvolve[j, MoebiusMu[j]^2, j, k] x^k/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
%t A327251 f[p_, e_] := p^(e - 1)*((p + 1)*e + p); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Aug 24 2021 *)
%o A327251 (PARI) mypsi(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
%o A327251 a(n) = sumdiv(n, d, mypsi(n/d)*d); \\ _Michel Marcus_, Sep 15 2019
%Y A327251 Cf. A000027, A001615, A018804, A060648, A322577, A347127.
%K A327251 nonn,mult
%O A327251 1,2
%A A327251 _Ilya Gutkovskiy_, Sep 15 2019