cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327275 a(1) = 1; a(n) = Sum_{d|n, d psi(n/d) * a(d), where psi = A001615.

This page as a plain text file.
%I A327275 #14 Sep 23 2019 13:29:03
%S A327275 1,3,4,15,6,36,8,75,28,54,12,252,14,72,72,375,18,348,20,378,96,108,24,
%T A327275 1620,66,126,196,504,30,936,32,1875,144,162,144,3108,38,180,168,2430,
%U A327275 42,1248,44,756,696,216,48,9900,120,810,216,882,54,3108,216,3240,240,270,60,8568
%N A327275 a(1) = 1; a(n) = Sum_{d|n, d<n} psi(n/d) * a(d), where psi = A001615.
%F A327275 G.f. A(x) satisfies: A(x) = x + Sum_{k>=2} psi(k) * A(x^k).
%F A327275 a(p) = p + 1, where p is prime.
%t A327275 a[n_] := If[n == 1, n, Sum[If[d < n, DirichletConvolve[j, MoebiusMu[j]^2, j, n/d] a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 1, 60}]
%t A327275 nmax = 60; A[_] = 0; Do[A[x_] = x + Sum[DirichletConvolve[j, MoebiusMu[j]^2, j, k] A[x^k], {k, 2, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
%Y A327275 Cf. A001615, A006874, A048250, A323363.
%K A327275 nonn
%O A327275 1,2
%A A327275 _Ilya Gutkovskiy_, Sep 15 2019