cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327279 Decimal expansion of a constant related to A008485 and A327215.

Original entry on oeis.org

2, 6, 8, 0, 1, 5, 2, 1, 2, 7, 1, 0, 7, 3, 3, 3, 1, 5, 6, 8, 6, 9, 5, 3, 8, 3, 8, 2, 8, 0, 3, 2, 8, 6, 7, 9, 5, 0, 0, 6, 6, 6, 7, 5, 7, 2, 4, 2, 0, 3, 9, 4, 2, 6, 4, 4, 5, 9, 0, 4, 1, 5, 8, 4, 6, 9, 5, 3, 9, 0, 9, 4, 9, 9, 2, 6, 7, 0, 6, 0, 0, 5, 4, 3, 3, 5, 0, 1, 7, 4, 3, 9, 4, 2, 2, 3, 1, 2, 9, 5, 4, 0, 8, 3, 2, 1
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 28 2019

Keywords

Examples

			0.26801521271073331568695383828032867950066675724203942644590415846953909499267...
		

Crossrefs

Programs

  • Mathematica
    val = Sqrt[(1 - r*s)*(Log[r*s]^2/(2*Pi*(4*ArcTanh[1 - 2*r*s]*(r*s + (-1 + r*s)*Log[r*s]) - 2*(1 + (-1 + r*s)*ArcTanh[1 - 2*r*s])*Log[1 - r*s] + (-1 + r*s)*(2 + 3*Log[r*s] - 2*Log[1 - r*s]) * QPolyGamma[0, 1, r*s] + (1 - r*s)* QPolyGamma[0, 1, r*s]^2 + (-1 + r*s)*(QPolyGamma[1, 1, r*s] + r*s*Log[r*s]*(r*s^2*Log[r*s] * Derivative[0, 2][QPochhammer][r*s, r*s] - 2*Derivative[0, 0, 1][QPolyGamma][0, 1, r*s])))))] /. FindRoot[{QPochhammer[r*s] == 1/s, 1/s + r*s*Derivative[0, 1][QPochhammer][r*s, r*s] == (Log[1 - r*s] + QPolyGamma[0, 1, r*s])/(s*Log[r*s])}, {r, 1/5}, {s, 2}, WorkingPrecision -> 1000]; RealDigits[Chop[val], 10, -Floor[Log[10, Abs[Im[val]]]] - 3][[1]] (* Vaclav Kotesovec, Oct 02 2023 *)

Formula

Equals limit_{n->infinity} A008485(n) * sqrt(n) / A270915^n.