This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327305 #18 Aug 31 2020 03:44:28 %S A327305 4,0,3,0,0,1,1,4,2,0,2,2,3,2,4,4,1,1,2,2,3,0,2,2,4,2,1,4,1,4,0,0,0,2, %T A327305 4,1,1,3,1,1,0,4,1,2,1,2,2,1,1,2,0,0,3,1,2,0,4,2,0,3,4,4,0,0,0,0,1,4, %U A327305 0,3,4,0,1,4,4,3,3,0,2,3,2,3,3,3,1,4,2,4 %N A327305 Digits of one of the two 5-adic integers sqrt(-9) that is related to A327303. %C A327305 This is the 5-adic solution to x^2 = -9 that ends in 4. A327304 gives the other solution that ends in 1. %H A327305 Robert Israel, <a href="/A327305/b327305.txt">Table of n, a(n) for n = 0..10000</a> %H A327305 G. P. Michon, <a href="http://www.numericana.com/answer/p-adic.htm#integers">Introduction to p-adic integers</a>, Numericana. %F A327305 For n > 0, a(n) is the unique m in {0, 1, 2, 3, 4} such that (A327303(n) + m*5^n)^2 + 9 is divisible by 5^(n+1). %F A327305 a(n) = (A327303(n+1) - A327303(n))/5^n. %F A327305 For n > 0, a(n) = 4 - A327304(n). %e A327305 Equals ...1131142000414124220322114423220241100304. %p A327305 op([1,1,3], select(t -> padic:-ratvaluep(t,1)=4, [padic:-rootp(x^2+9,5,100)])); # _Robert Israel_, Aug 31 2020 %o A327305 (PARI) a(n) = truncate(-sqrt(-9+O(5^(n+1))))\5^n %Y A327305 Cf. A327302, A327303. %Y A327305 Digits of 5-adic square roots: %Y A327305 A327304, this sequence (sqrt(-9)); %Y A327305 A324029, A324030 (sqrt(-6)); %Y A327305 A269591, A269592 (sqrt(-4)); %Y A327305 A210850, A210851 (sqrt(-1)); %Y A327305 A324025, A324026 (sqrt(6)). %K A327305 nonn,base %O A327305 0,1 %A A327305 _Jianing Song_, Sep 16 2019