cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327306 a(n) = floor(3*n*r) - 3*floor(n*r), where r = sqrt(6).

Original entry on oeis.org

0, 1, 2, 1, 2, 0, 2, 0, 1, 0, 1, 2, 1, 2, 0, 2, 0, 1, 0, 1, 2, 1, 2, 1, 2, 0, 2, 0, 1, 0, 1, 2, 1, 2, 0, 2, 0, 1, 0, 1, 2, 1, 2, 0, 2, 0, 2, 0, 1, 0, 1, 2, 1, 2, 0, 2, 0, 1, 0, 1, 2, 1, 2, 0, 2, 0, 1, 0, 1, 0, 1, 2, 1, 2, 0, 2, 0, 1, 0, 1, 2, 1, 2, 0, 2, 0
Offset: 0

Views

Author

Clark Kimberling, Sep 07 2019

Keywords

Crossrefs

The positions of 0's, 1's and 2's in {a(n) : n > 0} are given by A327307, A327308 and A327309.
Cf. A022840.

Programs

  • Mathematica
    r = Sqrt[6]; z = 300;
    t = Table[Floor[3 n*r] - 3 Floor[n*r], {n, 0, z}]
  • Python
    from math import isqrt
    def A327306(n): return isqrt(9*(m:=6*n*n))-3*isqrt(m) # Chai Wah Wu, Aug 04 2022

Formula

a(n) = floor(3*n*r) - 3*floor(n*r), where r = sqrt(6).