cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327314 Rectangular array read by descending antidiagonals: the distinct rows of the quotient array, A307693, of A003188.

This page as a plain text file.
%I A327314 #9 Jul 27 2024 19:15:17
%S A327314 1,3,1,2,2,1,6,4,3,1,7,5,2,2,1,5,3,5,4,2,1,4,8,6,3,5,2,1,12,9,4,7,4,4,
%T A327314 3,1,13,10,10,9,3,3,2,3,1,15,7,11,8,9,8,6,2,2,1,14,6,12,6,10,9,7,6,5,
%U A327314 2,1,10,16,8,5,11,7,5,5,4,4,2,1,11,17,9
%N A327314 Rectangular array read by descending antidiagonals: the distinct rows of the quotient array, A307693, of A003188.
%C A327314 Each row of the quotient array, A307693, occurs infinitely many times.  Specifically, if p is a prime (A000040), then for every multiple m*p of p, the rows numbered m*p are identical.  In the present array only the first occurrence of each row of A307693 is retained; these are the prime-numbered rows of A307693.  Every row is a permutation of the positive integers, so that every positive integer occurs infinitely many times.
%e A327314 Northwest corner:
%e A327314   1   3   2   6   7   5   4   12  13  15
%e A327314   1   2   4   5   3   8   9   10   7   6
%e A327314   1   3   2   5   6   4  10   11  12   8
%e A327314   1   2   4   3   7   9   8    6   5  14
%e A327314   1   2   5   4   3   9  10   11   8   7
%e A327314   1   2   4   3   8   9   7    6   5  15
%t A327314 s = Table[BitXor[n, Floor[n/2]], {n, 2000}]; (* A003188 *)
%t A327314 g[n_] := Flatten[Position[Mod[s, n], 0]];
%t A327314 u[n_] := s[[g[Prime[n]]]]/Prime[n];
%t A327314 Column[Table[Take[u[n], 20], {n, 1, 20}]]  (* A326925 array *)
%t A327314 v[n_, k_] := u[n][[k]];
%t A327314 Table[v[n - k + 1, k], {n, 14}, {k, n, 1, -1}] // Flatten  (* A326925 sequence *)
%Y A327314 Cf. A000040, A003188, A307693.
%K A327314 nonn,tabl
%O A327314 1,2
%A A327314 _Clark Kimberling_, Nov 01 2019