This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327316 #12 Nov 07 2019 04:24:55 %S A327316 1,5,2,19,15,3,65,76,30,4,211,325,190,50,5,665,1266,975,380,75,6,2059, %T A327316 4655,4431,2275,665,105,7,6305,16472,18620,11816,4550,1064,140,8, %U A327316 19171,56745,74124,55860,26586,8190,1596,180,9,58025,191710,283725,247080 %N A327316 Triangular array read by rows: row n shows the coefficients of this polynomial of degree n: p(x,n) = ((x+r)^n - (x+s)^n)/(r - s), where r = 3 and s = 2. %C A327316 For every choice of integers r and s, the polynomials p(n,x) form a strong divisibility sequence. Thus, if r, s, and x are integers, then p(x,n) is a strong divisibility sequence. That is, gcd(p(x,h),p(x,k)) = p(x,gcd(h,k)). %e A327316 First seven rows: %e A327316 1 %e A327316 5 2 %e A327316 19 15 3 %e A327316 65 76 30 4 %e A327316 211 325 190 50 5 %e A327316 665 1266 975 380 75 6 %e A327316 2059 4655 4431 2275 665 105 7 %t A327316 f[x_, n_] := ((x + r)^n - (x + s)^n)/(r - s); %t A327316 r = 3; s = 2; %t A327316 Column[Table[Expand[f[x, n]], {n, 1, 5}]] %t A327316 c[x_, n_] := CoefficientList[Expand[f[x, n]], x] %t A327316 TableForm[Table[c[x, n], {n, 1, 10}]] (* A327316 array *) %t A327316 Flatten[Table[c[x, n], {n, 1, 12}]] (* A327316 sequence *) %Y A327316 Cf. A001047 (x=0), A005061 (x=1), A005060 (x=2), A005062 (x=3), A081200 (x=1/2). %K A327316 nonn,tabl %O A327316 1,2 %A A327316 _Clark Kimberling_, Nov 01 2019