A327317
Triangular array read by rows: row n shows the coefficients of this polynomial of degree n: p(x,n) = 2^(n-1) ((x+r)^n - (x+s)^n)/(r - s), where r = 2 and s = 1/2.
Original entry on oeis.org
1, 5, 4, 21, 30, 12, 85, 168, 120, 32, 341, 850, 840, 400, 80, 1365, 4092, 5100, 3360, 1200, 192, 5461, 19110, 28644, 23800, 11760, 3360, 448, 21845, 87376, 152880, 152768, 95200, 37632, 8960, 1024, 87381, 393210, 786384, 917280, 687456, 342720, 112896
Offset: 1
First six rows:
1;
5, 4;
21, 30, 12;
85, 168, 120, 32;
341, 850, 840, 400, 80;
1365, 4092, 5100, 3360, 1200, 192;
The first six polynomials, not factored:
1, 5 + 4 x, 21 + 30 x + 12 x^2, 85 + 168 x + 120 x^2 + 32 x^3, 341 + 850 x + 840 x^2 + 400 x^3 + 80 x^4, 1365 + 4092 x + 5100 x^2 + 3360 x^3 + 1200 x^4 + 192 x^5.
The first six polynomials, factored:
1, 5 + 4 x, 3 (7 + 10 x + 4 x^2), (5 + 4 x) (17 + 20 x + 8 x^2), 341 + 850 x + 840 x^2 + 400 x^3 + 80 x^4, 3 (5 + 4 x) (7 + 10 x + 4 x^2) (13 + 10 x + 4 x^2).
-
r = 2; s = 1/2; f[x_, n_] := 2^(n - 1) ((x + r)^n - (x + s)^n)/(r - s);
Column[Table[Expand[f[x, n]], {n, 1, 5}]]
c[x_, n_] := CoefficientList[Expand[f[x, n]], x]
TableForm[Table[c[x, n], {n, 1, 10}]] (* A327317 array *)
Flatten[Table[c[x, n], {n, 1, 12}]] (* A327317 sequence *)
A327318
Triangular array read by rows: row n shows the coefficients of this polynomial of degree n: p(x,n) = 2^(n-1) ((x+r)^n - (x+s)^n)/(r - s), where r = 1 and s = 1/2.
Original entry on oeis.org
1, 3, 4, 7, 18, 12, 15, 56, 72, 32, 31, 150, 280, 240, 80, 63, 372, 900, 1120, 720, 192, 127, 882, 2604, 4200, 3920, 2016, 448, 255, 2032, 7056, 13888, 16800, 12544, 5376, 1024, 511, 4590, 18288, 42336, 62496, 60480, 37632, 13824, 2304, 1023, 10220, 45900
Offset: 1
First six rows:
1;
3, 4;
7, 18, 12;
15, 56, 72, 32;
31, 150, 280, 240, 80;
63, 372, 900, 1120, 720, 192;
The first six polynomials, not factored:
1, 3 + 4 x, 7 + 18 x + 12 x^2, 15 + 56 x + 72 x^2 + 32 x^3, 31 + 150 x + 280 x^2 + 240 x^3 + 80 x^4, 63 + 372 x + 900 x^2 + 1120 x^3 + 720 x^4 + 192 x^5.
The first six polynomials, factored:
1, 3 + 4 x, 7 + 18 x + 12 x^2, (3 + 4 x) (5 + 12 x + 8 x^2), 31 + 150 x + 280 x^2 + 240 x^3 + 80 x^4, (3 + 4 x) (3 + 6 x + 4 x^2) (7 + 18 x + 12 x^2).
-
r = 1; s = 1/2; f[x_, n_] := 2^(n - 1) ((x + r)^n - (x + s)^n)/(r - s);
Column[Table[Expand[f[x, n]], {n, 1, 5}]]
c[x_, n_] := CoefficientList[Expand[f[x, n]], x]
TableForm[Table[c[x, n], {n, 1, 10}]] (* A327318 array *)
Flatten[Table[c[x, n], {n, 1, 12}]] (* A327318 sequence *)
Showing 1-2 of 2 results.
Comments