cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327318 Triangular array read by rows: row n shows the coefficients of this polynomial of degree n: p(x,n) = 2^(n-1) ((x+r)^n - (x+s)^n)/(r - s), where r = 1 and s = 1/2.

Original entry on oeis.org

1, 3, 4, 7, 18, 12, 15, 56, 72, 32, 31, 150, 280, 240, 80, 63, 372, 900, 1120, 720, 192, 127, 882, 2604, 4200, 3920, 2016, 448, 255, 2032, 7056, 13888, 16800, 12544, 5376, 1024, 511, 4590, 18288, 42336, 62496, 60480, 37632, 13824, 2304, 1023, 10220, 45900
Offset: 1

Views

Author

Clark Kimberling, Nov 08 2019

Keywords

Comments

p(x,n) is a strong divisibility sequence of polynomials. That is, gcd(p(x,h),p(x,k)) = p(x,gcd(h,k)). If x is an integer, then p(x,n) is a strong divisibility sequence of integers.

Examples

			First six rows:
   1;
   3,   4;
   7,  18,  12;
  15,  56,  72,   32;
  31, 150, 280,  240,  80;
  63, 372, 900, 1120, 720, 192;
The first six polynomials, not factored:
1, 3 + 4 x, 7 + 18 x + 12 x^2, 15 + 56 x + 72 x^2 + 32 x^3, 31 + 150 x + 280 x^2 + 240 x^3 + 80 x^4, 63 + 372 x + 900 x^2 + 1120 x^3 + 720 x^4 + 192 x^5.
The first six polynomials, factored:
1, 3 + 4 x, 7 + 18 x + 12 x^2, (3 + 4 x) (5 + 12 x + 8 x^2), 31 + 150 x + 280 x^2 + 240 x^3 + 80 x^4, (3 + 4 x) (3 + 6 x + 4 x^2) (7 + 18 x + 12 x^2).
		

Crossrefs

Cf. A327316, A327317, A000225 (x = 0), A005061 (x = 1), A081199 (x = 1/2).

Programs

  • Mathematica
    r = 1; s = 1/2; f[x_, n_] := 2^(n - 1) ((x + r)^n - (x + s)^n)/(r - s);
    Column[Table[Expand[f[x, n]], {n, 1, 5}]]
    c[x_, n_] := CoefficientList[Expand[f[x, n]], x]
    TableForm[Table[c[x, n], {n, 1, 10}]] (* A327318 array *)
    Flatten[Table[c[x, n], {n, 1, 12}]]   (* A327318 sequence *)