This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327325 #27 May 27 2025 18:20:00 %S A327325 1,2,3,4,5,7,11,22,26,49,101,111,121,131,151,181,191,202,313,353,373, %T A327325 383,727,757,787,797,919,929,1001,1111,2285,10001,10201,10301,10501, %U A327325 10601,11111,11311,11411,12421,12721,12821,13331,13831,13931,14341,14741,15451 %N A327325 Integers with palindromic product of divisors. %C A327325 Numbers m such that A007955(m) = pod(m) are in A002113. %C A327325 Corresponding values of pod(a(n)): 1, 2, 3, 8, 5, 7, 11, 484, 676, 343, 101, 12321, 1331, 131, 151, ... %H A327325 Giovanni Resta, <a href="/A327325/b327325.txt">Table of n, a(n) for n = 1..10000</a> %e A327325 A007955(49) = 343. %t A327325 Select[Range[16000], PalindromeQ[#^(DivisorSigma[0, #]/2)] &] (* _Amiram Eldar_, Aug 31 2019 *) %o A327325 (Magma) [m: m in [1..10^5] | Intseq(&*[d: d in Divisors(m)], 10) eq Reverse(Intseq(&*[d: d in Divisors(m)], 10))]; %o A327325 (PARI) isok(n) = my(d=digits(vecprod(divisors(n)))); Vecrev(d) == d; \\ _Michel Marcus_, Sep 02 2019 %Y A327325 Cf. A002113, A007955, A028980, A180925, A244411. %K A327325 nonn,base %O A327325 1,2 %A A327325 _Jaroslav Krizek_, Aug 30 2019