cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A327331 Number of elements added at n-th stage to the toothpick structure of A327330.

Original entry on oeis.org

1, 2, 4, 4, 4, 8, 10, 8, 4, 8, 10, 12, 14, 22, 22, 16, 4, 8, 10, 12, 14, 22, 22, 20, 14, 24, 28, 34, 42, 60, 48, 36, 4, 8, 10, 12, 14, 22, 22, 20, 14, 24, 28, 34, 42, 60, 48, 40, 18, 28, 34, 46, 50, 58, 50, 48, 40, 68, 76, 84, 108, 156, 100, 76, 4, 8, 10, 12, 14, 22, 22, 20, 14, 24, 28, 34, 42, 60, 48, 40
Offset: 1

Views

Author

Omar E. Pol, Sep 01 2019

Keywords

Comments

The word of this cellular automaton is "ab".
The structure of the irregular triangle is as shown below:
a,b;
a,b;
a,b,a,b;
a,b,a,b,a,b,a,b;
a,b,a,b,a,b,a,b,a,b,a,b,a,b,a,b;
...
Row lengths are the terms of A011782 multiplied by 2, also the column 2 of A296612.
Columns "a" contain numbers of I-toothpicks.
Columns "b" contain numbers of V-toothpicks.
For further information about the word of cellular automata see A296612.

Examples

			Triangle begins:
1,2;
4,4;
4,8,10,8;
4,8,10,12,14,22,22,16;
4,8,10,12,14,22,22,20,14,24,28,34,42,60,48,36;
4,8,10,12,14,22,22,20,14,24,28,34,42,60,48,40,18,28,34,46,50,58,50,48,40,68,...
		

Crossrefs

First differences of A327330.
Column 1 gives A123932.
First differs from A231348 at a(11).
For other hybrid cellular automata, see A194271, A194701, A220501, A289841, A290221, A294021, A294963, A294981, A299771, A323647, A323651.

A323646 "Letter A" toothpick sequence (see Comments for precise definition).

Original entry on oeis.org

0, 1, 3, 5, 9, 15, 21, 27, 39, 53, 65, 71, 83, 97, 113, 131, 163, 197, 217, 223, 235, 249, 265, 283, 315, 349, 373, 391, 423, 461, 505, 567, 659, 741, 777, 783, 795, 809, 825, 843, 875, 909, 933, 951, 983, 1021, 1065, 1127, 1219, 1301, 1341, 1359, 1391, 1429, 1473, 1535, 1627, 1713, 1773, 1835, 1931
Offset: 0

Views

Author

Omar E. Pol, Mar 07 2019

Keywords

Comments

This arises from a hybrid cellular automaton formed of toothpicks of length 2 and D-toothpicks of length 2*sqrt(2).
For the construction of the sequence the rules are as follows:
On the infinite square grid at stage 0 there are no toothpicks, so a(0) = 0.
For the next n generations we have that:
At stage 1 we place a toothpick of length 2 in the horizontal direction, centered at [0,0], so a(1) = 1.
If n is even we add D-toothpicks. Each new D-toothpick must have its midpoint touching the endpoint of exactly one existing toothpick.
If the x-coordinate of the middle point of the D-toothpick is negative then the D-toothpick must be placed in the NE-SW direction.
If the x-coordinate of the middle point of the D-toothpick is positive then the D-toothpick must be placed in the NW-SE direction.
If n is odd we add toothpicks in horizontal direction. Each new toothpick must have its midpoint touching the endpoint of exactly one existing D-toothpick.
The sequence gives the number of toothpicks and D-toothpicks after n stages.
A323647 (the first differences) gives the number of elements added at the n-th stage.
Note that if n >> 1 at the end of every cycle the structure looks like a "volcano", or in other words, the structure looks like a trapeze which is almost an isosceles right triangle.
The "word" of this cellular automaton is "ab". For more information about the word of cellular automata see A296612.

Examples

			After two generations the structure looks like a letter "A" which is formed by a initial I-toothpick (or a toothpick of length 2), placed in horizontal direction, and two D-toothpicks each of length 2*sqrt(2) as shown below, so a(2) = 3.
Note that angle between both D-toothpicks is 90 degrees.
.
                      *
                    *   *
                  * * * * *
                *           *
              *               *
.
After three generations the structure contains three horizontal toothpicks and two D-toothpicks as shown below, so a(3) = 5.
.
                      *
                    *   *
                  * * * * *
                *           *
          * * * * *       * * * * *
.
		

Crossrefs

Formula

a(n) = 1 + A160730(n-1), n >= 1.
a(n) = 1 + 2*A168112(n-1), n >= 1.

A327332 "Concave pentagon" toothpick sequence, starting with a V-toothpick (see Comments for precise definition).

Original entry on oeis.org

0, 1, 3, 7, 11, 15, 21, 33, 41, 45, 51, 63, 75, 85, 101, 133, 149, 153, 159, 171, 183, 193, 209, 241, 261, 273, 291, 327, 363, 389, 431, 515, 547, 551, 557, 569, 581, 591, 607, 639, 659, 671, 689, 725, 761, 787, 829, 913, 953, 969, 993, 1041, 1085, 1109, 1149, 1229, 1277, 1309, 1357, 1453, 1549, 1613
Offset: 0

Views

Author

Omar E. Pol, Sep 01 2019

Keywords

Comments

Another version and very similar to A327330.
This arises from a hybrid cellular automaton on a triangular grid formed of V-toothpicks (A161206) and I-toothpicks (A160164).
After 2^k stages, the structure looks like a concave pentagon, which is formed essentially by an equilateral triangle (E) surrounded by two right triangles (R1 and R2) both with their hypotenuses in vertical position, as shown below:
.
* *
* * * *
* * * *
* * *
* R1 * * R2 *
* * * *
* * * *
* * * *
* * E * *
* * * *
* * * *
** **
* * * * * * * * * *
.
Every triangle has a slight resemblance to Sierpinsky's triangle, but here the structure is much more complex.
For the construction of the sequence the rules are as follows:
On the infinite triangular grid at stage 0 there are no toothpicks, so a(0) = 0.
At stage 1 we place an V-toothpick, formed of two single toothpicks, with its central vertice directed up, like a gable roof, so a(1) = 1.
For the next n generation we have that:
If n is even then at every free end of the structure we add a I-toothpick formed of two single toothpicks in vertical position.
If n is odd then at every free end of the structure we add a V-toothpick, formed of two single toothpicks, with its central vertex directed upward, like a gable roof (see the example).
a(n) gives the total number of V-toothpicks and I-toothpicks in the structure after the n-th stage.
A327333 (the first differences) gives the number of elements added at the n-th stage.
2*a(n) gives the total number of single toothpicks of length 1 after the n-th stage.
The structure contains many kinds of polygonal regions, for example: triangles, trapezes, parallelograms, regular hexagons, concave hexagons, concave decagons, concave 12-gons, concave 18-gons, concave 20-gons, and other polygons.
The structure is almost identical to the structure of A327330, but a little smaller.
The behavior seems to suggest that this sequence can be calculated with a formula, in the same way as A139250, but that is only a conjecture.
The "word" of this cellular automaton is "ab". For more information about the word of cellular automata see A296612.
It appears that A327330 shares infinitely many terms with this sequence.

Examples

			Illustration of initial terms:
.
.             /\     |/\|
.                    |  |
.
n:     0       1       2
a(n):  0       1       3
After two generations there are only one V-toothpick and two I-toothpicks in the structure, so a(2) = 1 + 2 = 3 (note that in total there are 2*a(2)= 2*3 = 6 single toothpicks of length 1).
		

Crossrefs

Cf. A139250 (normal toothpicks), A160164 (I-toothpicks), A160722 (a concave pentagon with triangular cells), A161206 (V-toothpicks), A296612, A323641, A323642, A327333 (first differences), A327330 (another version).
For other hybrid cellular automata, see A194270, A194700, A220500, A289840, A290220, A294020, A294962, A294980, A299770, A323646, A323650.

Formula

Conjecture: a(2^k) = A327330(2^k), k >= 0.

A355310 Total number of V-toothpicks after n-th stage in a cellular automaton with V-toothpicks of 60 degrees (see Comments lines for precise definition).

Original entry on oeis.org

0, 1, 3, 7, 13, 21, 27, 37, 51, 69, 79, 89, 103, 123, 141, 165, 201, 245, 267
Offset: 0

Views

Author

Jean Hoffmann and Omar E. Pol, Jul 20 2022

Keywords

Comments

An idea from Jean Hoffmann.
In this cellular automaton a V-toothpick is formed by 2 toothpicks of length 1 that share a vertex and the angle between both toothpicks is 60 degrees.
On the infinite triangular grid we start with no V-toothpick, so a(0) = 0.
At stage 1 we place a V-toothpick upside down, so a(1) = 1.
At every stage the V-toothpicks of the new generation must be connected to the structure by touching with their middle vertex the free ends of the V-toothpicks of the previous generation following a special rule:
The new V-toothpicks must be placed between the imaginary straight line containing the two extreme ends of the V-toothpick of the previous generation and the imaginary straight line that contains the middle vertex of that V-toothpick and that it is parallel to the aforementioned straight line.
A355311(n) gives the number of V-toothpicks added to the structure at the n-th stage.
2*a(n) is the total number of toothpicks of length 1 in the structure after n-th stage.
This cellular automaton is a companion of the Y-toothpick cellular automaton of A160120 in the sense that both essentially grow as an equilateral triangle.
This cellular automaton is slightly less symmetrical than Y-toothpick cellular automaton because its structure has a "backbone" formed by concave hexagons from the center of the triangle to one of its vertices.
The behavior could be very close to A160120 and similar to A153006 (see the graph).
After 18 stages we can see in the structure the following polygons:
- Equilateral triangles of perimeter 3.
- Equilateral triangles of perimeter 6 that contain 4 triangular cells.
- Concave hexagons of perimeter 8 that contain 6 triangular cells.
- Concave dodecagons (or concave 12-gons) of perimeter 18 that contain 22 triangular cells.

Examples

			Illustration of initial terms:
.
                                                                  /__\
                                               _\  /_            _\  /_
                                 /__\           /__\            /\/__\/\
            /\      _\/\/_      _\/\/_         _\/\/_          /__\/\/__\
                               /\    /\     _\/\/__\/\/_      _\/\/__\/\/_
                                                             /\          /\
.
  n:         1         2           3              4                 5
  a(n):      1         3           7             13                21
.
		

Crossrefs

Showing 1-4 of 4 results.