This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327334 #12 May 17 2021 04:36:43 %S A327334 1,1,0,1,1,0,4,3,1,0,26,28,9,1,0,296,490,212,25,1,0,6064,15336,9600, %T A327334 1692,75,1,0,230896,851368,789792,210140,14724,231,1,0 %N A327334 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and vertex-connectivity k. %C A327334 The vertex-connectivity of a graph is the minimum number of vertices that must be removed (along with any incident edges) to obtain a non-connected graph or singleton. Except for complete graphs, this is the same as cut-connectivity (A327125). %H A327334 Wikipedia, <a href="https://en.wikipedia.org/wiki/K-vertex-connected_graph">k-vertex-connected graph</a> %e A327334 Triangle begins: %e A327334 1 %e A327334 1 0 %e A327334 1 1 0 %e A327334 4 3 1 0 %e A327334 26 28 9 1 0 %e A327334 296 490 212 25 1 0 %t A327334 csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A327334 vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]; %t A327334 Table[Length[Select[Subsets[Subsets[Range[n],{2}]],vertConnSys[Range[n],#]==k&]],{n,0,5},{k,0,n}] %Y A327334 The unlabeled version is A259862. %Y A327334 Row sums are A006125. %Y A327334 Column k = 0 is A054592, if we assume A054592(0) = A054592(1) = 1. %Y A327334 Column k = 1 is A327336. %Y A327334 Row sums without the first column are A001187, if we assume A001187(0) = A001187(1) = 0. %Y A327334 Row sums without the first two columns are A013922, if we assume A013922(1) = 0. %Y A327334 Cut-connectivity is A327125. %Y A327334 Spanning edge-connectivity is A327069. %Y A327334 Non-spanning edge-connectivity is A327148. %Y A327334 Cf. A322389, A327051, A327070, A327126, A327127, A327350. %K A327334 nonn,tabl,more %O A327334 0,7 %A A327334 _Gus Wiseman_, Sep 01 2019 %E A327334 a(21)-a(35) from _Robert Price_, May 14 2021