cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327334 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and vertex-connectivity k.

This page as a plain text file.
%I A327334 #12 May 17 2021 04:36:43
%S A327334 1,1,0,1,1,0,4,3,1,0,26,28,9,1,0,296,490,212,25,1,0,6064,15336,9600,
%T A327334 1692,75,1,0,230896,851368,789792,210140,14724,231,1,0
%N A327334 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and vertex-connectivity k.
%C A327334 The vertex-connectivity of a graph is the minimum number of vertices that must be removed (along with any incident edges) to obtain a non-connected graph or singleton. Except for complete graphs, this is the same as cut-connectivity (A327125).
%H A327334 Wikipedia, <a href="https://en.wikipedia.org/wiki/K-vertex-connected_graph">k-vertex-connected graph</a>
%e A327334 Triangle begins:
%e A327334     1
%e A327334     1   0
%e A327334     1   1   0
%e A327334     4   3   1   0
%e A327334    26  28   9   1   0
%e A327334   296 490 212  25   1   0
%t A327334 csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
%t A327334 vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
%t A327334 Table[Length[Select[Subsets[Subsets[Range[n],{2}]],vertConnSys[Range[n],#]==k&]],{n,0,5},{k,0,n}]
%Y A327334 The unlabeled version is A259862.
%Y A327334 Row sums are A006125.
%Y A327334 Column k = 0 is A054592, if we assume A054592(0) = A054592(1) = 1.
%Y A327334 Column k = 1 is A327336.
%Y A327334 Row sums without the first column are A001187, if we assume A001187(0) = A001187(1) = 0.
%Y A327334 Row sums without the first two columns are A013922, if we assume A013922(1) = 0.
%Y A327334 Cut-connectivity is A327125.
%Y A327334 Spanning edge-connectivity is A327069.
%Y A327334 Non-spanning edge-connectivity is A327148.
%Y A327334 Cf. A322389, A327051, A327070, A327126, A327127, A327350.
%K A327334 nonn,tabl,more
%O A327334 0,7
%A A327334 _Gus Wiseman_, Sep 01 2019
%E A327334 a(21)-a(35) from _Robert Price_, May 14 2021