cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327350 Triangle read by rows where T(n,k) is the number of antichains of nonempty sets covering n vertices with vertex-connectivity >= k.

This page as a plain text file.
%I A327350 #14 May 25 2021 01:40:58
%S A327350 1,1,0,2,1,0,9,5,2,0,114,84,44,17,0,6894,6348,4983,3141,1451,0,7785062
%N A327350 Triangle read by rows where T(n,k) is the number of antichains of nonempty sets covering n vertices with vertex-connectivity >= k.
%C A327350 An antichain is a set of sets, none of which is a subset of any other. It is covering if there are no isolated vertices.
%C A327350 The vertex-connectivity of a set-system is the minimum number of vertices that must be removed (along with any empty or duplicate edges) to obtain a non-connected set-system or singleton. Note that this means a single node has vertex-connectivity 0.
%C A327350 If empty edges are allowed, we have T(0,0) = 2.
%e A327350 Triangle begins:
%e A327350      1
%e A327350      1    0
%e A327350      2    1    0
%e A327350      9    5    2    0
%e A327350    114   84   44   17    0
%e A327350   6894 6348 4983 3141 1451    0
%e A327350 The antichains counted in row n = 3:
%e A327350   {123}         {123}         {123}
%e A327350   {1}{23}       {12}{13}      {12}{13}{23}
%e A327350   {2}{13}       {12}{23}
%e A327350   {3}{12}       {13}{23}
%e A327350   {12}{13}      {12}{13}{23}
%e A327350   {12}{23}
%e A327350   {13}{23}
%e A327350   {1}{2}{3}
%e A327350   {12}{13}{23}
%t A327350 csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
%t A327350 stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
%t A327350 vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
%t A327350 Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Union@@#==Range[n]&&vertConnSys[Range[n],#]>=k&]],{n,0,4},{k,0,n}]
%Y A327350 Column k = 0 is A307249, or A006126 if empty edges are allowed.
%Y A327350 Column k = 1 is A048143 (clutters), if we assume A048143(0) = A048143(1) = 0.
%Y A327350 Column k = 2 is A275307 (blobs), if we assume A275307(1) = A275307(2) = 0.
%Y A327350 Column k = n - 1 is A327020 (cointersecting antichains).
%Y A327350 The unlabeled version is A327358.
%Y A327350 Negated first differences of rows are A327351.
%Y A327350 BII-numbers of antichains are A326704.
%Y A327350 Antichain covers are A006126.
%Y A327350 Cf. A003465, A014466, A120338, A293606, A293993, A319639, A323818, A327112, A327125, A327334, A327336, A327352, A327356, A327357, A327358.
%K A327350 nonn,tabl,more
%O A327350 0,4
%A A327350 _Gus Wiseman_, Sep 09 2019
%E A327350 a(21) from _Robert Price_, May 24 2021