This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327350 #14 May 25 2021 01:40:58 %S A327350 1,1,0,2,1,0,9,5,2,0,114,84,44,17,0,6894,6348,4983,3141,1451,0,7785062 %N A327350 Triangle read by rows where T(n,k) is the number of antichains of nonempty sets covering n vertices with vertex-connectivity >= k. %C A327350 An antichain is a set of sets, none of which is a subset of any other. It is covering if there are no isolated vertices. %C A327350 The vertex-connectivity of a set-system is the minimum number of vertices that must be removed (along with any empty or duplicate edges) to obtain a non-connected set-system or singleton. Note that this means a single node has vertex-connectivity 0. %C A327350 If empty edges are allowed, we have T(0,0) = 2. %e A327350 Triangle begins: %e A327350 1 %e A327350 1 0 %e A327350 2 1 0 %e A327350 9 5 2 0 %e A327350 114 84 44 17 0 %e A327350 6894 6348 4983 3141 1451 0 %e A327350 The antichains counted in row n = 3: %e A327350 {123} {123} {123} %e A327350 {1}{23} {12}{13} {12}{13}{23} %e A327350 {2}{13} {12}{23} %e A327350 {3}{12} {13}{23} %e A327350 {12}{13} {12}{13}{23} %e A327350 {12}{23} %e A327350 {13}{23} %e A327350 {1}{2}{3} %e A327350 {12}{13}{23} %t A327350 csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A327350 stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; %t A327350 vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]; %t A327350 Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Union@@#==Range[n]&&vertConnSys[Range[n],#]>=k&]],{n,0,4},{k,0,n}] %Y A327350 Column k = 0 is A307249, or A006126 if empty edges are allowed. %Y A327350 Column k = 1 is A048143 (clutters), if we assume A048143(0) = A048143(1) = 0. %Y A327350 Column k = 2 is A275307 (blobs), if we assume A275307(1) = A275307(2) = 0. %Y A327350 Column k = n - 1 is A327020 (cointersecting antichains). %Y A327350 The unlabeled version is A327358. %Y A327350 Negated first differences of rows are A327351. %Y A327350 BII-numbers of antichains are A326704. %Y A327350 Antichain covers are A006126. %Y A327350 Cf. A003465, A014466, A120338, A293606, A293993, A319639, A323818, A327112, A327125, A327334, A327336, A327352, A327356, A327357, A327358. %K A327350 nonn,tabl,more %O A327350 0,4 %A A327350 _Gus Wiseman_, Sep 09 2019 %E A327350 a(21) from _Robert Price_, May 24 2021