cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327351 Triangle read by rows where T(n,k) is the number of antichains of nonempty sets covering n vertices with vertex-connectivity exactly k.

This page as a plain text file.
%I A327351 #12 May 28 2021 11:03:22
%S A327351 1,1,0,1,1,0,4,3,2,0,30,40,27,17,0,546,1365,1842,1690,1451,0,41334
%N A327351 Triangle read by rows where T(n,k) is the number of antichains of nonempty sets covering n vertices with vertex-connectivity exactly k.
%C A327351 An antichain is a set of sets, none of which is a subset of any other. It is covering if there are no isolated vertices.
%C A327351 The vertex-connectivity of a set-system is the minimum number of vertices that must be removed (along with any empty or duplicate edges) to obtain a non-connected set-system or singleton. Note that this means a single node has vertex-connectivity 0.
%C A327351 If empty edges are allowed, we have T(0,0) = 2.
%e A327351 Triangle begins:
%e A327351     1
%e A327351     1    0
%e A327351     1    1    0
%e A327351     4    3    2    0
%e A327351    30   40   27   17    0
%e A327351   546 1365 1842 1690 1451    0
%t A327351 csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
%t A327351 stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
%t A327351 vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]
%t A327351 Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Union@@#==Range[n]&&vertConnSys[Range[n],#]==k&]],{n,0,4},{k,0,n}]
%Y A327351 Row sums are A307249, or A006126 if empty edges are allowed.
%Y A327351 Column k = 0 is A120338, if we assume A120338(0) = A120338(1) = 1.
%Y A327351 Column k = 1 is A327356.
%Y A327351 Column k = n - 1 is A327020.
%Y A327351 The unlabeled version is A327359.
%Y A327351 The version for vertex-connectivity >= k is A327350.
%Y A327351 The version for spanning edge-connectivity is A327352.
%Y A327351 The version for non-spanning edge-connectivity is A327353, with covering case A327357.
%Y A327351 Cf. A003465, A006126, A014466, A048143, A293993, A323818, A326704, A327125, A327334, A327336.
%K A327351 nonn,tabl,more
%O A327351 0,7
%A A327351 _Gus Wiseman_, Sep 09 2019
%E A327351 a(21) from _Robert Price_, May 28 2021