cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327352 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of antichains of nonempty subsets of {1..n} with spanning edge-connectivity k.

This page as a plain text file.
%I A327352 #5 Sep 11 2019 20:21:47
%S A327352 1,1,1,4,1,14,4,1,83,59,23,2,1232,2551,2792,887,107,10,1
%N A327352 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of antichains of nonempty subsets of {1..n} with spanning edge-connectivity k.
%C A327352 An antichain is a set of sets, none of which is a subset of any other.
%C A327352 The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a set-system that is disconnected or covers fewer vertices.
%e A327352 Triangle begins:
%e A327352      1
%e A327352      1    1
%e A327352      4    1
%e A327352     14    4    1
%e A327352     83   59   23    2
%e A327352   1232 2551 2792  887  107   10    1
%e A327352 Row n = 3 counts the following antichains:
%e A327352   {}             {{1,2,3}}      {{1,2},{1,3},{2,3}}
%e A327352   {{1}}          {{1,2},{1,3}}
%e A327352   {{2}}          {{1,2},{2,3}}
%e A327352   {{3}}          {{1,3},{2,3}}
%e A327352   {{1,2}}
%e A327352   {{1,3}}
%e A327352   {{2,3}}
%e A327352   {{1},{2}}
%e A327352   {{1},{3}}
%e A327352   {{2},{3}}
%e A327352   {{1},{2,3}}
%e A327352   {{2},{1,3}}
%e A327352   {{3},{1,2}}
%e A327352   {{1},{2},{3}}
%t A327352 csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
%t A327352 stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
%t A327352 spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
%t A327352 Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],spanEdgeConn[Range[n],#]==k&]],{n,0,4},{k,0,2^n}]//.{foe___,0}:>{foe}
%Y A327352 Row sums are A014466.
%Y A327352 Column k = 0 is A327355.
%Y A327352 The unlabeled version is A327438.
%Y A327352 Cf. A052446, A327062, A327071, A327103, A327111, A327144, A327351, A327353.
%K A327352 nonn,tabf,more
%O A327352 0,4
%A A327352 _Gus Wiseman_, Sep 10 2019