cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327353 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of antichains of subsets of {1..n} with non-spanning edge-connectivity k.

This page as a plain text file.
%I A327353 #7 Sep 11 2019 20:21:53
%S A327353 1,1,1,2,3,8,7,3,1,53,27,45,36,6,747,511,1497,2085,1540,693,316,135,
%T A327353 45,10,1
%N A327353 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of antichains of subsets of {1..n} with non-spanning edge-connectivity k.
%C A327353 An antichain is a set of sets, none of which is a subset of any other.
%C A327353 The non-spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (along with any non-covered vertices) to obtain a disconnected or empty set-system.
%e A327353 Triangle begins:
%e A327353     1
%e A327353     1    1
%e A327353     2    3
%e A327353     8    7    3    1
%e A327353    53   27   45   36    6
%e A327353   747  511 1497 2085 1540  693  316  135   45   10    1
%e A327353 Row n = 3 counts the following antichains:
%e A327353   {}             {{1}}      {{1,2},{1,3}}  {{1,2},{1,3},{2,3}}
%e A327353   {{1},{2}}      {{2}}      {{1,2},{2,3}}
%e A327353   {{1},{3}}      {{3}}      {{1,3},{2,3}}
%e A327353   {{2},{3}}      {{1,2}}
%e A327353   {{1},{2,3}}    {{1,3}}
%e A327353   {{2},{1,3}}    {{2,3}}
%e A327353   {{3},{1,2}}    {{1,2,3}}
%e A327353   {{1},{2},{3}}
%t A327353 csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
%t A327353 stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
%t A327353 eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
%t A327353 Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],eConn[#]==k&]],{n,0,4},{k,0,2^n}]//.{foe___,0}:>{foe}
%Y A327353 Row sums are A014466.
%Y A327353 Column k = 0 is A327354.
%Y A327353 The covering case is A327357.
%Y A327353 The version for spanning edge-connectivity is A327352.
%Y A327353 The specialization to simple graphs is A327148, with covering case A327149, unlabeled version A327236, and unlabeled covering case A327201.
%Y A327353 Cf. A052446, A307249, A326704, A326787, A327071, A327351, A327355.
%K A327353 nonn,tabf,more
%O A327353 0,4
%A A327353 _Gus Wiseman_, Sep 10 2019