cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327354 Number of disconnected or empty antichains of nonempty subsets of {1..n} (non-spanning edge-connectivity 0).

This page as a plain text file.
%I A327354 #5 Sep 11 2019 20:22:02
%S A327354 1,1,2,8,53,747,45156,54804920,19317457655317
%N A327354 Number of disconnected or empty antichains of nonempty subsets of {1..n} (non-spanning edge-connectivity 0).
%C A327354 An antichain is a set of sets, none of which is a subset of any other.
%C A327354 The non-spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (along with any non-covered vertices) to obtain a disconnected or empty set-system.
%F A327354 Equals the binomial transform of the exponential transform of A048143 minus A048143.
%e A327354 The a(1) = 1 through a(3) = 8 antichains:
%e A327354   {}  {}         {}
%e A327354       {{1},{2}}  {{1},{2}}
%e A327354                  {{1},{3}}
%e A327354                  {{2},{3}}
%e A327354                  {{1},{2,3}}
%e A327354                  {{2},{1,3}}
%e A327354                  {{3},{1,2}}
%e A327354                  {{1},{2},{3}}
%t A327354 csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
%t A327354 stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
%t A327354 Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Length[csm[#]]!=1&]],{n,0,4}]
%Y A327354 Column k = 0 of A327353.
%Y A327354 The covering case is A120338.
%Y A327354 The unlabeled version is A327426.
%Y A327354 The spanning edge-connectivity version is A327352.
%Y A327354 Cf. A014466, A326787, A327071, A327148, A327236, A327355, A327357.
%K A327354 nonn,more
%O A327354 0,3
%A A327354 _Gus Wiseman_, Sep 10 2019